The Design of an Oncology Knowledge Base from an Online Health Forum

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2022-05
Language
English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.E.C.E.
Degree Year
2022
Department
Electrical & Computer Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Knowledge base completion is an important task that allows scientists to reason over knowledge bases and discover new facts. In this thesis, a patient-centric knowledge base is designed and constructed using medical entities and relations extracted from the health forum r/cancer. The knowledge base stores information in binary relation triplets. It is enhanced with an is-a relation that is able to represent the hierarchical relationship between different medical entities. An enhanced Neural Tensor Network that utilizes the frequency of occurrence of relation triplets in the dataset is then developed to infer new facts from the enhanced knowledge base. The results show that when the enhanced inference model uses the enhanced knowledge base, a higher accuracy (73.2 %) and recall@10 (35.4%) are obtained. In addition, this thesis describes a methodology for knowledge base and associated inference model design that can be applied to other chronic diseases.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}