ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Basavarajappa, Halesha D."

Now showing 1 - 8 of 8
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The Antiangiogenic Activity of Naturally-occurring and synthetic Homoisoflavonoids from the Hyacinthaceae (sensu APGII)
    (American Chemical Society, 2019-04-05) Schwikkard, Sianne; Whitmore, Hannah; Sishtla, Kamakshi; Sulaiman, Rania S.; Shetty, Trupti; Basavarajappa, Halesha D.; Waller, Catherine; Alqahtani, Alaa; Frankemoelle, Lennart; Chapman, Andy; Crouch, Neil; Wetschnig, Wolfgang; Knirsch, Walter; Andriantiana, Jacky; Mas-Claret, Eduard; Langat, Moses K.; Mulholland, Dulcie; Corson, Timothy W.; Ophthalmology, School of Medicine
    Excessive blood vessel formation in the eye is implicated in wet age-related macular degeneration, proliferative diabetic retinopathy, neovascular glaucoma, and retinopathy of prematurity, which are major causes of blindness. Small molecule antiangiogenic drugs are strongly needed to supplement existing biologics. Homoisoflavonoids have been previously shown to have potent antiproliferative activities in endothelial cells over other cell types. Moreover, they demonstrated a strong antiangiogenic potential in vitro and in vivo in animal models of ocular neovascularization. Here, we tested the antiangiogenic activity of a group of naturally occurring homoisoflavonoids isolated from the family Hyacinthaceae and related synthetic compounds, chosen for synthesis based on structure-activity relationship observations. Several compounds showed interesting antiproliferative and antiangiogenic activities in vitro on retinal microvascular endothelial cells, a disease-relevant cell type, with the synthetic chromane, 46, showing the best activity (GI50 of 2.3 × 10-4 μM).
  • Loading...
    Thumbnail Image
    Item
    Ferrochelatase is a therapeutic target for ocular neovascularization
    (Wiley, 2017) Basavarajappa, Halesha D.; Sulaiman, Rania S.; Qi, Xiaoping; Shetty, Trupti; Babu, Sardar Sheik Pran; Sishtla, Kamakshi L.; Lee, Bit; Quigley, Judith; Alkhairy, Sameerah; Briggs, Christian M.; Gupta, Kamna; Tang, Buyun; Shadmand, Mehdi; Grant, Maria B.; Boulton, Michael E.; Seo, Seung-Yong; Corson, Timothy W.; Department of Ophthalmology, IU School of Medicine
    Ocular neovascularization underlies major blinding eye diseases such as “wet” age-related macular degeneration (AMD). Despite the successes of treatments targeting the vascular endothelial growth factor (VEGF) pathway, resistant and refractory patient populations necessitate discovery of new therapeutic targets. Using a forward chemical genetic approach, we identified the heme synthesis enzyme ferrochelatase (FECH) as necessary for angiogenesis in vitro and in vivo. FECH is overexpressed in wet AMD eyes and murine choroidal neovascularization; siRNA knockdown of Fech or partial loss of enzymatic function in the Fechm1Pas mouse model reduces choroidal neovascularization. FECH depletion modulates endothelial nitric oxide synthase function and VEGF receptor 2 levels. FECH is inhibited by the oral antifungal drug griseofulvin, and this compound ameliorates choroidal neovascularization in mice when delivered intravitreally or orally. Thus, FECH inhibition could be used therapeutically to block ocular neovascularization.
  • Loading...
    Thumbnail Image
    Item
    The first synthesis of the antiangiogenic homoisoflavanone, cremastranone
    (Royal Society of Chemistry, 2014-10-21) Lee, Bit; Basavarajappa, Halesha D.; Sulaiman, Rania S.; Fei, Xiang; Seo, Seung-Yong; Corson, Timothy W.; Department of Ophthalmology, IU School of Medicine
    An antiangiogenic homoisoflavanone, cremastranone, was synthesized for the first time. This scalable synthesis, which includes selective demethylation, could be used to develop lead molecules to treat angiogenesis-induced eye diseases. Synthetic cremastranone inhibited the proliferation, migration and tube formation ability of human retinal microvascular endothelial cells, important steps in pathological angiogenesis.
  • Loading...
    Thumbnail Image
    Item
    The First Synthesis of the Antiangiogenic Homoisoflavanone, Cremastranone
    (Royal Society of Chemistry, 2014) Lee, Bit; Basavarajappa, Halesha D.; Sulaiman, Rania S.; Fei, Xiang; Seo, Seung-Yong; Corson, Timothy W.; Department of Ophthalmology, IU School of Medicine
    An antiangiogenic homoisoflavanone, cremastranone, was synthesized for the first time. This scalable synthesis, which includes selective demethylation, could be used to develop lead molecules to treat angiogenesis-induced eye diseases. Synthetic cremastranone inhibited the proliferation, migration and tube formation ability of human retinal microvascular endothelial cells, important steps in pathological angiogenesis.
  • Loading...
    Thumbnail Image
    Item
    Glucolipotoxic Stress-Induced Mig6 Desensitizes EGFR Signaling and Promotes Pancreatic Beta Cell Death
    (MDPI, 2023-05-04) Chen, Yi-Chun; Lutkewitte, Andrew J.; Basavarajappa, Halesha D.; Fueger, Patrick T.; Pediatrics, School of Medicine
    A loss of functional beta cell mass is a final etiological event in the development of frank type 2 diabetes (T2D). To preserve or expand beta cells and therefore treat/prevent T2D, growth factors have been considered therapeutically but have largely failed to achieve robust clinical success. The molecular mechanisms preventing the activation of mitogenic signaling pathways from maintaining functional beta cell mass during the development of T2D remain unknown. We speculated that endogenous negative effectors of mitogenic signaling cascades impede beta cell survival/expansion. Thus, we tested the hypothesis that a stress-inducible epidermal growth factor receptor (EGFR) inhibitor, mitogen-inducible gene 6 (Mig6), regulates beta cell fate in a T2D milieu. To this end, we determined that: (1) glucolipotoxicity (GLT) induces Mig6, thereby blunting EGFR signaling cascades, and (2) Mig6 mediates molecular events regulating beta cell survival/death. We discovered that GLT impairs EGFR activation, and Mig6 is elevated in human islets from T2D donors as well as GLT-treated rodent islets and 832/13 INS-1 beta cells. Mig6 is essential for GLT-induced EGFR desensitization, as Mig6 suppression rescued the GLT-impaired EGFR and ERK1/2 activation. Further, Mig6 mediated EGFR but not insulin-like growth factor-1 receptor nor hepatocyte growth factor receptor activity in beta cells. Finally, we identified that elevated Mig6 augmented beta cell apoptosis, as Mig6 suppression reduced apoptosis during GLT. In conclusion, we established that T2D and GLT induce Mig6 in beta cells; the elevated Mig6 desensitizes EGFR signaling and induces beta cell death, suggesting Mig6 could be a novel therapeutic target for T2D.
  • Loading...
    Thumbnail Image
    Item
    Natural product inhibitors of ocular angiogenesis
    (ScienceDirect, 2014-12) Sulaiman, Rania S.; Basavarajappa, Halesha D.; Corson, Timothy W.; Department of Ophthalmology, IU School of Medicine
    Natural products are characterized by high chemical diversity and biochemical specificity; therefore, they are appealing as lead compounds for drug discovery. Given the importance of angiogenesis to many pathologies, numerous natural products have been explored as potential anti-angiogenic drugs. Ocular angiogenesis underlies blinding eye diseases such as retinopathy of prematurity (ROP) in children, proliferative diabetic retinopathy (DR) in adults of working age, and age-related macular degeneration (AMD) in the elderly. Despite the presence of effective therapy in many cases, these diseases are still a significant health burden. Anti-VEGF biologics are the standard of care, but may cause ocular or systemic side effects after intraocular administration and patients may be refractory. Many anti-angiogenic compounds inhibit tumor growth and metastasis alone or in combination therapy, but a more select subset of them has been tested in the context of ocular neovascular diseases. Here, we review the promise of natural products as anti-angiogenic agents, with a specific focus on retinal and choroidal neovascularization. The multifunctional curcumin and the chalcone isoliquiritigenin have demonstrated promising anti-angiogenic effects in mouse models of DR and choroidal neovascularization (CNV) respectively. The homoisoflavanone cremastranone and the flavonoid deguelin have been shown to inhibit ocular neovascularization in more than one disease model. The isoflavone genistein and the flavone apigenin on the other hand are showing potential in the prevention of retinal and choroidal angiogenesis with long-term administration. Many other products with anti-angiogenic potential in vitro such as the lactone withaferin A, the flavonol quercetin, and the stilbenoid combretastatin A4 are awaiting investigation in different ocular disease-relevant animal models. These natural products may serve as lead compounds for the design of more specific, efficacious, and affordable drugs with minimal side effects.
  • Loading...
    Thumbnail Image
    Item
    Synthesis and Biological Evaluation of Novel Homoisoflavonoids for Retinal Neovascularization
    (ACS, 2015-06) Basavarajappa, Halesha D.; Lee, Bit; Lee, Hyungjun; Sulaiman, Rania S.; An, Hongchan; Magaña, Carlos; Shadmand, Mehdi; Vayl, Alexandra; Rajashekhar, Gangaraju; Kim, Eun-Yeong; Suh, Young-Ger; Lee, Kiho; Seo, Seung-Yong; Corson, Timothy W.; Department of Ophthalmology, IU School of Medicine
    Eye diseases characterized by excessive angiogenesis such as wet age-related macular degeneration, proliferative diabetic retinopathy, and retinopathy of prematurity are major causes of blindness. Cremastranone is an antiangiogenic, naturally occurring homoisoflavanone with efficacy in retinal and choroidal neovascularization models and antiproliferative selectivity for endothelial cells over other cell types. We undertook a cell-based structure–activity relationship study to develop more potent cremastranone analogues, with improved antiproliferative selectivity for retinal endothelial cells. Phenylalanyl-incorporated homoisoflavonoids showed improved activity and remarkable selectivity for retinal microvascular endothelial cells. A lead compound inhibited angiogenesis in vitro without inducing apoptosis and had efficacy in the oxygen-induced retinopathy model in vivo.
  • Loading...
    Thumbnail Image
    Item
    Transcriptional and Epigenetic Regulation of KIF14 Overexpression in Ovarian Cancer
    (Public Library of Science, 2014-03-13) Thériault, Brigitte L.; Basavarajappa, Halesha D.; Lim, Harvey; Pajovic, Sanja; Gallie, Brenda L.; Corson, Timothy W.; Ophthalmology, School of Medicine
    KIF14 (kinesin family member 14) is a mitotic kinesin and an important oncogene in several cancers. Tumor KIF14 expression levels are independently predictive of poor outcome, and in cancer cells KIF14 can modulate metastatic behavior by maintaining appropriate levels of cell adhesion and migration proteins at the cell membrane. Thus KIF14 is an exciting potential therapeutic target. Understanding KIF14's regulation in cancer cells is crucial to the development of effective and selective therapies to block its tumorigenic function(s). We previously determined that close to 30% of serous ovarian cancers (OvCa tumors) exhibit low-level genomic gain, indicating one mechanism of KIF14 overexpression in tumors. We now report on transcriptional and epigenetic regulation of KIF14. Through promoter deletion analyses, we identified one cis-regulatory region containing binding sites for Sp1, HSF1 and YY1. siRNA-mediated knockdown of these transcription factors demonstrated endogenous regulation of KIF14 overexpression by Sp1 and YY1, but not HSF1. ChIP experiments confirmed an enrichment of both Sp1 and YY1 binding to the endogenous KIF14 promoter in OvCa cell lines with high KIF14 expression. A strong correlation was seen in primary serous OvCa tumors between Sp1, YY1 and KIF14 expression, further evidence that these transcription factors are important players in KIF14 overexpression. Hypomethylation patterns were observed in primary serous OvCa tumors, suggesting a minor role for promoter methylation in the control of KIF14 gene expression. miRNA expression analysis determined that miR-93, miR-144 and miR-382 had significantly lower levels of expression in primary serous OvCa tumors than normal tissues; treatment of an OvCa cell line with miRNA mimics and inhibitors specifically modulated KIF14 mRNA levels, pointing to potential novel mechanisms of KIF14 overexpression in primary tumors. Our findings reveal multiple mechanisms of KIF14 upregulation in cancer cells, offering new targets for therapeutic interventions to reduce KIF14 in tumors, aiming at improved prognosis.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University