- Browse by Author
Browsing by Author "Arkenberg, Matthew R."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Chemically defined and dynamic click hydrogels support hair cell differentiation in human inner ear organoids(Elsevier, 2025) Arkenberg, Matthew R.; Jafarkhani, Mahboubeh; Lin, Chien-Chi; Hashino, Eri; Otolaryngology -- Head and Neck Surgery, School of MedicineThe mechanical properties in the inner ear microenvironment play a key role in its patterning during embryonic development. To recapitulate inner ear development in vitro, three-dimensional tissue engineering strategies including the application of representative tissue models and scaffolds are of increasing interest. Human inner ear organoids are a promising model to recapitulate developmental processes; however, the current protocol requires Matrigel that contains ill-defined extracellular matrix components. Here, we implement an alternative, chemically defined, dynamic hydrogel to support the differentiation of human inner ear organoids. Specifically, thiol-norbornene and hydrazide-aldehyde click chemistries are used to fabricate inner ear organoid-laden, gelatin-based scaffolds. We identify optimal formulations to support hair cell development with comparable efficiency and fidelity to Matrigel-cultured organoids. These results suggest that the chemically defined hydrogel may serve as a viable alternative to Matrigel for inner ear tissue engineering.Item Dynamic Click Hydrogels for Xeno-Free Culture of Induced Pluripotent Stem Cells(Wiley, 2020-11) Arkenberg, Matthew R.; Dimmitt, Nathan H.; Johnson, Hunter C.; Koehler, Karl R.; Lin, Chien-Chi; Biomedical Engineering, School of Engineering and TechnologyXeno-free, chemically defined poly(ethylene glycol) (PEG)-based hydrogels are being increasingly used for in vitro culture and differentiation of human induced pluripotent stem cells (hiPSCs). These synthetic matrices provide tunable gelation and adaptable material properties crucial for guiding stem cell fate. Here, sequential norbornene-click chemistries are integrated to form synthetic, dynamically tunable PEG-peptide hydrogels for hiPSCs culture and differentiation. Specifically, hiPSCs are photoencapsulated in thiol-norbornene hydrogels crosslinked by multiarm PEG-norbornene (PEG-NB) and proteaselabile crosslinkers. These matrices are used to evaluate hiPSC growth under the influence of extracellular matrix properties. Tetrazine-norbornene (Tz-NB) click reaction is then employed to dynamically stiffen the cell-laden hydrogels. Fast reactive Tz and its stable derivative methyltetrazine (mTz) are tethered to multiarm PEG, yielding mono-functionalized PEG-Tz, PEG-mTz, and dualfunctionalized PEG-Tz/mTz that react with PEG-NB to form additional crosslinks in the cell-laden hydrogels. The versatility of Tz-NB stiffening is demonstrated with different Tz-modified macromers or by intermittent incubation of PEG-Tz for temporal stiffening. Finally, the Tz-NB-mediated dynamic stiffening is explored for 4D culture and definitive endoderm differentiation of hiPSCs. Overall, this dynamic hydrogel platform affords exquisite controls of hydrogel crosslinking for serving as a xeno-free and dynamic stem cell niche.Item Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation(Elsevier, 2018) Arkenberg, Matthew R.; Moore, Dustin M.; Lin, Chien-Chi; Biomedical Engineering, School of Engineering and TechnologyCell-laden hydrogels whose crosslinking density can be dynamically and reversibly tuned are highly sought-after for studying pathophysiological cellular fate processes, including embryogenesis, fibrosis, and tumorigenesis. Special efforts have focused on controlling network crosslinking in poly(ethylene glycol) (PEG) based hydrogels to evaluate the impact of matrix mechanics on cell proliferation, morphogenesis, and differentiation. In this study, we sought to design dynamic PEG-peptide hydrogels that permit cyclic/reversible stiffening and softening. This was achieved by utilizing reversible enzymatic reactions that afford specificity, biorthogonality, and predictable reaction kinetics. To that end, we prepared PEG-peptide conjugates to enable sortase A (SrtA) induced tunable hydrogel crosslinking independent of macromer contents. Uniquely, these hydrogels can be completely degraded by the same enzymatic reactions and the degradation rate can be tuned from hours to days. We further synthesized SrtA-sensitive peptide linker (i.e., KCLPRTGCK) for crosslinking with 8-arm PEG-norbornene (PEG8NB) via thiol-norbornene photocrosslinking. These hydrogels afford diverse softening paradigms through control of network structures during crosslinking or by adjusting enzymatic parameters during on-demand softening. Importantly, user-controlled hydrogel softening promoted spreading of human mesenchymal stem cells (hMSCs) in 3D. Finally, we designed a bis-cysteine-bearing linear peptide flanked with SrtA substrates at the peptide’s N- and C-termini (i.e., NH2-GGGCKGGGKCLPRTG-CONH2) to enable cyclic/reversible hydrogel stiffening/softening. We show that matrix stiffening and softening play a crucial role in growth and chemoresistance in pancreatic cancer cells. These results represent the first dynamic hydrogel platform that affords cyclic gel stiffening/softening based on reversible enzymatic reactions. More importantly, the chemical motifs that affords such reversible crosslinking were built-in on the linear peptide crosslinker without any post-synthesis modification.Item Enzymatic crosslinking of dynamic hydrogels for in vitro cell culture(2018-04) Arkenberg, Matthew R.; Lin, Chien-ChiStiffening and softening of extracellular matrix (ECM) are critical processes governing many aspects of biological processes. The most common practice used to investigate these processes is seeding cells on two-dimensional (2D) surfaces of varying stiffness. In recent years, cell-laden three-dimensional (3D) scaffolds with controllable properties are also increasingly used. However, current 2D and 3D culture platforms do not permit spatiotemporal controls over material properties that could influence tissue processes. To address this issue, four-dimensional (4D) hydrogels (i.e., 3D materials permitting time-dependent control of matrix properties) are proposed to recapitulate dynamic changes of ECM properties. The goal of this thesis was to exploit orthogonal enzymatic reactions for on-demand stiffening and/or softening of cell-laden hydrogels. The first objective was to establish cytocompatible hydrogels permitting enzymatic crosslinking and stiffening using enzymes with orthogonal reactivity. Sortase A (SrtA) and mushroom tyrosinase (MT) were used sequentially to achieve initial gelation and on-demand stiffening. In addition, hydrogels permitting reversible stiffening through SrtA-mediated peptide ligation were established. Specifically, poly(ethylene glycol) (PEG)-peptide hydrogels were fabricated with peptide linkers containing pendent SrtA substrates. The hydrogels were stiffened through incubation with SrtA, whereas gel softening was achieved subsequently via addition of SrtA and soluble glycine substrate. The second objective was to investigate the role of dynamic matrix stiffening on pancreatic cancer cell survival, spheroid formation, and drug responsiveness. The crosslinking of PEG-peptide hydrogels was dynamically tuned to evaluate the effect of matrix stiffness on cell viability and function. Specifically, dynamic matrix stiffening inhibited cell proliferation and spheroid formation, while softening the cell-laden hydrogels led to significant increase in spheroid sizes. Matrix stiffness also altered the expression of chemoresistance markers and responsiveness of cancer cells to gemcitabine treatment. markers and responsiveness of cancer cells to gemcitabine treatment.Item Heparinized Gelatin-Based Hydrogels for Differentiation of Induced Pluripotent Stem Cells(American Chemical Society, 2022) Arkenberg, Matthew R.; Koehler, Karl; Lin, Chien-Chi; Biomedical Engineering, School of Engineering and TechnologyChemically defined hydrogels are increasingly utilized to define the effects of extracellular matrix (ECM) components on cellular fate determination of human embryonic and induced pluripotent stem cell (hESC and hiPSCs). In particular, hydrogels cross-linked by orthogonal click chemistry, including thiol-norbornene photopolymerization and inverse electron demand Diels-Alder (iEDDA) reactions, are explored for 3D culture of hESC/hiPSCs owing to the specificity, efficiency, cytocompatibility, and modularity of the cross-linking reactions. In this work, we exploited the modularity of thiol-norbornene photopolymerization to create a biomimetic hydrogel platform for 3D culture and differentiation of hiPSCs. A cell-adhesive, protease-labile, and cross-linkable gelatin derivative, gelatin-norbornene (GelNB), was used as the backbone polymer for constructing hiPSC-laden biomimetic hydrogels. GelNB was further heparinized via the iEDDA click reaction using tetrazine-modified heparin (HepTz), creating GelNB-Hep. GelNB or GelNB-Hep was modularly cross-linked with either inert macromer poly(ethylene glycol)-tetra-thiol (PEG4SH) or another bioactive macromer-thiolated hyaluronic acid (THA). The formulations of these hydrogels were modularly tuned to afford biomimetic matrices with similar elastic moduli but varying bioactive components, enabling the understanding of each bioactive component on supporting hiPSC growth and ectodermal, mesodermal, and endodermal fate commitment under identical soluble differentiation cues.Item Hydrolytically Degradable PEG-Based Inverse Electron Demand Diels-Alder Click Hydrogels(American Chemical Society, 2022) Dimmitt, Nathan H.; Arkenberg, Matthew R.; de Lima Perini, Mariana Moraes; Li, Jiliang; Lin, Chien-Chi; Biomedical Engineering, School of Engineering and TechnologyHydrogels cross-linked by inverse electron demand Diels-Alder (iEDDA) click chemistry are increasingly used in biomedical applications. With a few exceptions in naturally derived and chemically modified macromers, iEDDA click hydrogels exhibit long-term hydrolytic stability, and no synthetic iEDDA click hydrogels can undergo accelerated and tunable hydrolytic degradation. We have previously reported a novel method for synthesizing norbornene (NB)-functionalized multiarm poly(ethylene glycol) (PEG), where carbic anhydride (CA) was used to replace 5-norbornene-2-carboxylic acid. The new PEGNBCA-based thiol-norbornene hydrogels exhibited unexpected fast yet highly tunable hydrolytic degradation. In this contribution, we leveraged the new PEGNBCA macromer for forming iEDDA click hydrogels with [methyl]tetrazine ([m]Tz)-modified macromers, leading to the first group of synthetic iEDDA click hydrogels with highly tunable hydrolytic degradation kinetics. We further exploited Tz and mTz dual conjugation to achieve tunable hydrolytic degradation with an in vitro degradation time ranging from 2 weeks to 3 months. Finally, we demonstrated the excellent in vitro cytocompatibility and in vivo biocompatibility of the new injectable PEGNBCA-based iEDDA click cross-linked hydrogels.Item Orthogonal enzymatic reactions for rapid crosslinking and dynamic tuning of PEG–peptide hydrogels(RSC, 2017-11) Arkenberg, Matthew R.; Lin, Chien-Chi; Biomedical Engineering, School of Engineering and TechnologyStiffening of the extracellular matrix is a hallmark in cancer progression, embryonic development, and wound healing. To mimic this dynamic process, our work explored orthogonal enzymatic reactions capable of modulating the properties of poly(ethylene glycol) (PEG)–peptide hydrogels. A hepta-mutant bacterial transpeptidase sortase A (SrtA7M) was used to ligate two PEG–peptide macromers (i.e., PEG-YLPRTG and NH2-GGGG-PEG) into a primary hydrogel network. The hydrogels were dynamically stiffened using mushroom tyrosinase (MT), which oxidized tyrosine residues into di-tyrosine and led to increased matrix stiffness. After confirming the expression and enhanced catalytic activity of SrtA7M, we investigated the cytocompatibility of the enzymatic reaction with a mouse insulinoma cell line, MIN6. In addition, we altered peptide substrate concentrations and evaluated their influence on primary hydrogel network properties and MT-triggered stiffening. Using a pancreatic cancer cell line, COLO-357, the effect of MT-triggered stiffening on spheroid formation was investigated. We found that cell spheroids formed in hydrogels that were exposed to MT were significantly smaller than spheroids formed without MT incubation, suggesting that matrix stiffening played a crucial role in the sizes of cancer cell spheroids. Through utilizing highly specific and orthogonal enzymatic reactions, this hydrogel platform permits rapid and mild in situ cell encapsulation, as well as dynamic control of matrix stiffness for investigating the role of matrix stiffening on cell fate processes.Item Photo-click hydrogels for 3D in situ differentiation of pancreatic progenitors from induced pluripotent stem cells(BMC, 2023-08-30) Arkenberg, Matthew R.; Ueda, Yoshitomo; Hashino, Eri; Lin, Chien‑Chi; Otolaryngology -- Head and Neck Surgery, School of MedicineBackground: Induced pluripotent stem cells (iPSC) can be differentiated to cells in all three germ layers, as well as cells in the extraembryonic tissues. Efforts in iPSC differentiation into pancreatic progenitors in vitro have largely been focused on optimizing soluble growth cues in conventional two-dimensional (2D) culture, whereas the impact of three-dimensional (3D) matrix properties on the morphogenesis of iPSC remains elusive. Methods: In this work, we employ gelatin-based thiol-norbornene photo-click hydrogels for in situ 3D differentiation of human iPSCs into pancreatic progenitors (PP). Molecular analysis and single-cell RNA-sequencing were utilized to elucidate on the distinct identities of subpopulations within the 2D and 3D differentiated cells. Results: We found that, while established soluble cues led to predominately PP cells in 2D culture, differentiation of iPSCs using the same soluble factors led to prominent branching morphogenesis, ductal network formation, and generation of diverse endoderm populations. Through single-cell RNA-sequencing, we found that 3D differentiation resulted in enrichments of pan-endodermal cells and ductal cells. We further noted the emergence of a group of extraembryonic cells in 3D, which was absent in 2D differentiation. The unexpected emergence of extraembryonic cells in 3D was found to be associated with enrichment of Wnt and BMP signaling pathways, which may have contributed to the emergence of diverse cell populations. The expressions of PP signature genes PDX1 and NKX6.1 were restored through inhibition of Wnt signaling at the beginning of the posterior foregut stage. Conclusions: To our knowledge, this work established the first 3D hydrogel system for in situ differentiation of human iPSCs into PPs.Item Recent advances in bio-orthogonal and dynamic crosslinking of biomimetic hydrogels(Royal Society of Chemistry, 2020-09-21) Arkenberg, Matthew R.; Nguyen, Han D.; Lin, Chien-Chi; Biomedical Engineering, School of Engineering and TechnologyIn recent years, dynamic, 'click' hydrogels have been applied in numerous biomedical applications. Owing to the mild, cytocompatible, and highly specific reaction kinetics, a multitude of orthogonal handles have been developed for fabricating dynamic hydrogels to facilitate '4D' cell culture. The high degree of tunability in crosslinking reactions of orthogonal 'click' chemistry has enabled a bottom-up approach to install specific biomimicry in an artificial extracellular matrix. In addition to click chemistry, highly specific enzymatic reactions are also increasingly used for network crosslinking and for spatiotemporal control of hydrogel properties. On the other hand, covalent adaptable chemistry has been used to recapitulate the viscoelastic component of biological tissues and for formulating self-healing and shear-thinning hydrogels. The common feature of these three classes of chemistry (i.e., orthogonal click chemistry, enzymatic reactions, and covalent adaptable chemistry) is that they can be carried out under ambient and aqueous conditions, a prerequisite for maintaining cell viability for in situ cell encapsulation and post-gelation modification of network properties. Due to their orthogonality, different chemistries can also be applied sequentially to provide additional biochemical and mechanical control to guide cell behavior. Herein, we review recent advances in the use of orthogonal click chemistry, enzymatic reactions, and covalent adaptable chemistry for the development of dynamically tunable and biomimetic hydrogels.