- Browse by Author
Browsing by Author "Al Juboori, Mohammed"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Counting Photobleach Steps and the Dynamics of Bacterial Predators(Office of the Vice Chancellor for Research, 2016-04-08) Jashnsaz, Hossein; Tsekouras, Konstantinos; Al Juboori, Mohammed; Weistuch, Corey; Miller, Nick; Nguyen, Tyler; McCoy, Bryan; Perkins, Stephanie; Anderson, Gregory; Presse, StevePhotobleach (PB) counting is used to enumerate proteins by monitoring how the light intensity in some regions decreases by quanta as individual fluorophores photobleach. While it is straightforward in theory, PB counting is often difficult because fluorescence traces are noisy. In this work, we quantify the sources of noise that arise during photobleach counting to construct a principled likelihood function of observing the data given a model. Noise in the signal could arise from background fluorescence, variable fluorophore emission, and fluorophore blinking. In addition, in a completely different direction, we explore the role of hydrodynamic interactions on the dynamics of bacterial predators. Our study shows that Bdellovibrio (BV) - a model predatory bacterium - is susceptible to self-generated hydrodynamic forces. Near surfaces and defects, these hydrodynamic interactions co-localize BV with its prey, and this may enhance BV’s hunting efficiency.Item Hydrodynamic Hunters(Cell Press, 2017-03-28) Jashnsaz, Hossein; Al Juboori, Mohammed; Weistuch, Corey; Miller, Nicholas; Nguyen, Tyler; Meyerhoff, Viktoria; McCoy, Bryan; Perkins, Stephanie; Wallgren, Ross; Ray, Bruce D.; Tsekouras, Konstantinos; Anderson, Gregory G.; Pressé, Steve; Physics, School of ScienceThe Gram-negative Bdellovibrio bacteriovorus (BV) is a model bacterial predator that hunts other bacteria and may serve as a living antibiotic. Despite over 50 years since its discovery, it is suggested that BV probably collides into its prey at random. It remains unclear to what degree, if any, BV uses chemical cues to target its prey. The targeted search problem by the predator for its prey in three dimensions is a difficult problem: it requires the predator to sensitively detect prey and forecast its mobile prey’s future position on the basis of previously detected signal. Here instead we find that rather than chemically detecting prey, hydrodynamics forces BV into regions high in prey density, thereby improving its odds of a chance collision with prey and ultimately reducing BV’s search space for prey. We do so by showing that BV’s dynamics are strongly influenced by self-generated hydrodynamic flow fields forcing BV onto surfaces and, for large enough defects on surfaces, forcing BV in orbital motion around these defects. Key experimental controls and calculations recapitulate the hydrodynamic origin of these behaviors. While BV’s prey (Escherichia coli) are too small to trap BV in hydrodynamic orbit, the prey are also susceptible to their own hydrodynamic fields, substantially confining them to surfaces and defects where mobile predator and prey density is now dramatically enhanced. Colocalization, driven by hydrodynamics, ultimately reduces BV’s search space for prey from three to two dimensions (on surfaces) even down to a single dimension (around defects). We conclude that BV’s search for individual prey remains random, as suggested in the literature, but confined, however—by generic hydrodynamic forces—to reduced dimensionality.