- Browse by Author
Browsing by Author "Abreu, Marco"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Alcohol Use Disorder Polygenic Score Compared With Family History and ADH1B(American Medical Association, 2024-12-02) Lai, Dongbing; Zhang, Michael; Abreu, Marco; Schwantes-An, Tae-Hwi; Chan, Grace; Dick, Danielle M.; Kamarajan, Chella; Kuang, Weipeng; Nurnberger, John I.; Plawecki, Martin H.; Rice, John; Schuckit, Marc; Porjesz, Bernice; Liu, Yunlong; Foroud, Tatiana; Medical and Molecular Genetics, School of MedicineImportance: Identification of individuals at high risk of alcohol use disorder (AUD) and subsequent application of prevention and intervention programs has been reported to decrease the incidence of AUD. The polygenic score (PGS), which measures an individual's genetic liability to a disease, can potentially be used to evaluate AUD risk. Objective: To assess the estimability and generalizability of the PGS, compared with family history and ADH1B, in evaluating the risk of AUD among populations of European ancestry. Design, setting, and participants: This genetic association study was conducted between October 1, 2023, and May 21, 2024. A 2-stage design was used. First, the pruning and thresholding method was used to calculate PGSs in the screening stage. Second, the estimability and generalizability of the best PGS was determined using 2 independent samples in the testing stage. Three cohorts ascertained to study AUD were used in the screening stage: the Collaborative Study on the Genetics of Alcoholism (COGA), the Study of Addiction: Genetics and Environment (SAGE), and the Australian Twin-Family Study of Alcohol Use Disorder (OZALC). The All of Us Research Program (AOU), which comprises participants with diverse backgrounds and conditions, and the Indiana Biobank (IB), consisting of Indiana University Health system patients, were used to test the best PGS. For the COGA, SAGE, and OZALC cohorts, cases with AUD were determined using Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) or Fifth Edition (DSM-5) criteria; controls did not meet any criteria or did not have any other substance use disorders. For the AOU and IB cohorts, cases with AUD were identified using International Classification of Diseases, Ninth Revision (ICD-9) or International Classification of Diseases, Tenth Revision (ICD-10) codes; controls were aged 21 years or older and did not have AUD. Exposure: The PGS was calculated using single-nucleotide variants with concordant effects in 3 large-scale genome-wide association studies of AUD-related phenotypes. Main outcomes and measures: The main outcome was AUD determined with DSM-IV or DSM-5 criteria and ICD-9 or ICD-10 codes. Generalized linear mixed models and logistic regression models were used to analyze related and unrelated samples, respectively. Results: The COGA, SAGE, and OZALC cohorts included a total of 8799 samples (6323 cases and 2476 controls; 50.6% were men). The AOU cohort had a total of 116 064 samples (5660 cases and 110 404 controls; 60.4% were women). The IB cohort had 6373 samples (936 cases and 5437 controls; 54.9% were women). The 5% of samples with the highest PGS in the AOU and IB cohorts were approximately 2 times more likely to develop AUD (odds ratio [OR], 1.96 [95% CI, 1.78-2.16]; P = 4.10 × 10-43; and OR, 2.07 [95% CI, 1.59-2.71]; P = 9.15 × 10-8, respectively) compared with the remaining 95% of samples; these ORs were comparable to family history of AUD. For the 5% of samples with the lowest PGS in the AOU and IB cohorts, the risk of AUD development was approximately half (OR, 0.53 [95% CI, 0.45-0.62]; P = 6.98 × 10-15; and OR, 0.57 [95% CI, 0.39-0.84]; P = 4.88 × 10-3) compared with the remaining 95% of samples; these ORs were comparable to the protective effect of ADH1B. PGS had similar estimabilities in male and female individuals. Conclusions and relevance: In this study of AUD risk among populations of European ancestry, PGSs were calculated using concordant single-nucleotide variants and the best PGS was tested in targeted datasets. The findings suggest that the PGS may potentially be used to evaluate AUD risk. More datasets with similar AUD prevalence as in general populations are needed to further test the generalizability of PGS.Item Gene-based polygenic risk scores analysis of alcohol use disorder in African Americans(Springer Nature, 2022-07-05) Lai, Dongbing; Schwantes-An, Tae-Hwi; Abreu, Marco; Chan, Grace; Hesselbrock, Victor; Kamarajan, Chella; Liu, Yunlong; Meyers, Jacquelyn L.; Nurnberger, John I., Jr.; Plawecki, Martin H.; Wetherill, Leah; Schuckit, Marc; Zhang, Pengyue; Edenberg, Howard J.; Porjesz, Bernice; Agrawal, Arpana; Foroud, Tatiana; Medical and Molecular Genetics, School of MedicineGenome-wide association studies (GWAS) in admixed populations such as African Americans (AA) have limited sample sizes, resulting in poor performance of polygenic risk scores (PRS). Based on the observations that many disease-causing genes are shared between AA and European ancestry (EA) populations, and some disease-causing variants are located within the boundaries of these genes, we proposed a novel gene-based PRS framework (PRSgene) by using variants located within disease-associated genes. Using the AA GWAS of alcohol use disorder (AUD) from the Million Veteran Program and the EA GWAS of problematic alcohol use as the discovery GWAS, we identified 858 variants from 410 genes that were AUD-related in both AA and EA. PRSgene calculated using these variants were significantly associated with AUD in three AA target datasets (P-values ranged from 7.61E-05 to 6.27E-03; Betas ranged from 0.15 to 0.21) and outperformed PRS calculated using all variants (P-values ranged from 7.28E-03 to 0.16; Betas ranged from 0.06 to 0.18). PRSgene were also associated with AUD in an EA target dataset (P-value = 0.02, Beta = 0.11). In AA, individuals in the highest PRSgene decile had an odds ratio of 1.76 (95% CI: 1.32-2.34) to develop AUD compared to those in the lowest decile. The 410 genes were enriched in 54 Gene Ontology biological processes, including ethanol oxidation and processes involving the synaptic system, which are known to be AUD-related. In addition, 26 genes were targets of drugs used to treat AUD or other diseases that might be considered for repurposing to treat AUD. Our study demonstrated that the gene-based PRS had improved performance in evaluating AUD risk in AA and provided new insight into AUD genetics.Item Genome-wide meta-analyses of cross substance use disorders in European, African, and Latino ancestry populations(Research Square, 2024-07-16) Lai, Dongbing; Zhang, Michael; Green, Nick; Abreu, Marco; Schwantes-An, Tae-Hwi; Parker, Clarissa; Zhang, Shanshan; Jin, Fulai; Sun, Anna; Zhang, Pengyue; Edenberg, Howard; Liu, Yunlong; Foroud, Tatiana; Medical and Molecular Genetics, School of MedicineGenetic risks for substance use disorders (SUDs) are due to both SUD-specific and SUD-shared genes. We performed the largest multivariate analyses to date to search for SUD-shared genes using samples of European (EA), African (AA), and Latino (LA) ancestries. By focusing on variants having cross-SUD and cross-ancestry concordant effects, we identified 45 loci. Through gene-based analyses, gene mapping, and gene prioritization, we identified 250 SUD-shared genes. These genes are highly expressed in amygdala, cortex, hippocampus, hypothalamus, and thalamus, primarily in neuronal cells. Cross-SUD concordant variants explained ~ 50% of the heritability of each SUD in EA. The top 5% individuals having the highest polygenic scores were approximately twice as likely to have SUDs as others in EA and LA. Polygenic scores had higher predictability in females than in males in EA. Using real-world data, we identified five drugs targeting identified SUD-shared genes that may be repurposed to treat SUDs.Item Pathogenic variants in the Longitudinal Early-onset Alzheimer's Disease Study cohort(Wiley, 2023) Nudelman, Kelly N. H.; Jackson, Trever; Rumbaugh, Malia; Eloyan, Ani; Abreu, Marco; Dage, Jeffrey L.; Snoddy, Casey; Faber, Kelley M.; Foroud, Tatiana; Hammers, Dustin B.; DIAN/DIAN-TU Clinical/Genetics Committee; Taurone, Alexander; Thangarajah, Maryanne; Aisen, Paul; Beckett, Laurel; Kramer, Joel; Koeppe, Robert; Kukull, Walter A.; Murray, Melissa E.; Toga, Arthur W.; Vemuri, Prashanthi; Atri, Alireza; Day, Gregory S.; Duara, Ranjan; Graff-Radford, Neill R.; Honig, Lawrence S.; Jones, David T.; Masdeu, Joseph C.; Mendez, Mario; Musiek, Erik; Onyike, Chiadi U.; Riddle, Meghan; Rogalski, Emily; Salloway, Stephen; Sha, Sharon J.; Turner, R. Scott; Wingo, Thomas S.; Wolk, David A.; Carrillo, Maria C.; Dickerson, Bradford C.; Rabinovici, Gil D.; Apostolova, Liana G.; LEADS Consortium; Medical and Molecular Genetics, School of MedicineIntroduction: One goal of the Longitudinal Early-onset Alzheimer's Disease Study (LEADS) is to investigate the genetic etiology of early onset (40-64 years) cognitive impairment. Toward this goal, LEADS participants are screened for known pathogenic variants. Methods: LEADS amyloid-positive early-onset Alzheimer's disease (EOAD) or negative early-onset non-AD (EOnonAD) cases were whole exome sequenced (N = 299). Pathogenic variant frequency in APP, PSEN1, PSEN2, GRN, MAPT, and C9ORF72 was assessed for EOAD and EOnonAD. Gene burden testing was performed in cases compared to similar-age cognitively normal controls in the Parkinson's Progression Markers Initiative (PPMI) study. Results: Previously reported pathogenic variants in the six genes were identified in 1.35% of EOAD (3/223) and 6.58% of EOnonAD (5/76). No genes showed enrichment for carriers of rare functional variants in LEADS cases. Discussion: Results suggest that LEADS is enriched for novel genetic causative variants, as previously reported variants are not observed in most cases. Highlights: Sequencing identified eight cognitively impaired pathogenic variant carriers. Pathogenic variants were identified in PSEN1, GRN, MAPT, and C9ORF72. Rare variants were not enriched in APP, PSEN1/2, GRN, and MAPT. The Longitudinal Early-onset Alzheimer's Disease Study (LEADS) is a key resource for early-onset Alzheimer's genetic research.Item Reduction of APOE accounts for neurobehavioral deficits in fetal alcohol spectrum disorders(Springer Nature, 2024) Hwang, Hye M.; Yamashita, Satoshi; Matsumoto, Yu; Ito, Mariko; Edwards, Alex; Sasaki, Junko; Dutta, Dipankar J.; Mohammad, Shahid; Yamashita, Chiho; Wetherill, Leah; Schwantes-An, Tae-Hwi; Abreu, Marco; Mahnke, Amanda H.; Mattson, Sarah N.; Foroud, Tatiana; Miranda, Rajesh C.; Chambers, Christina; Torii, Masaaki; Hashimoto-Torii, Kazue; Medical and Molecular Genetics, School of MedicineA hallmark of fetal alcohol spectrum disorders (FASD) is neurobehavioral deficits that still do not have effective treatment. Here, we present that reduction of Apolipoprotein E (APOE) is critically involved in neurobehavioral deficits in FASD. We show that prenatal alcohol exposure (PAE) changes chromatin accessibility of Apoe locus, and causes reduction of APOE levels in both the brain and peripheral blood in postnatal mice. Of note, postnatal administration of an APOE receptor agonist (APOE-RA) mitigates motor learning deficits and anxiety in those mice. Several molecular and electrophysiological properties essential for learning, which are altered by PAE, are restored by APOE-RA. Our human genome-wide association study further reveals that the interaction of PAE and a single nucleotide polymorphism in the APOE enhancer which chromatin is closed by PAE in mice is associated with lower scores in the delayed matching-to-sample task in children. APOE in the plasma is also reduced in PAE children, and the reduced level is associated with their lower cognitive performance. These findings suggest that controlling the APOE level can serve as an effective treatment for neurobehavioral deficits in FASD.Item The Contribution of Known Familial Cardiovascular Disease Genes to Sudden Cardiac Death in Patients Undergoing Hemodialysis(Karger, 2021) Schwantes-An, Tae-Hwi; Vatta, Matteo; Abreu, Marco; Wetherill, Leah; Edenberg, Howard J.; Foroud, Tatiana M.; Chertow, Glenn M.; Moe, Sharon M.; Medical and Molecular Genetics, School of MedicineIntroduction: Patients with chronic kidney disease experience high rates of cardiovascular mortality and morbidity. When kidney disease progresses to the need for dialysis, sudden cardiac death (SCD) accounts for 25-35% of all cardiovascular deaths. The objective was to determine if rare genetic variants known to be associated with cardiovascular death in the general population are associated with SCD in patients undergoing hemodialysis. Methods: We performed a case-control study comparing 126 (37 African American [AfAn] and 89 European ancestry [EA]) SCD subjects and 107 controls (34 AfAn and 73 EA), matched for age, sex, self-reported race, dialysis duration (<2, 2-5 and >5 years), and the presence or absence of diabetes mellitus. To target the coding regions of genes previously reported to be associated with 15 inherited cardiac conditions (ICCs), we used the TruSight Cardio Kit (Illumina, San Diego, CA, USA) to capture the genetic regions of interest. In all, the kit targets 572-kb regions that include the protein-coding regions and 40-bp 5' and 3' end-flanking regions of 174 genes associated with the 15 ICCs. Using the sequence data, burden tests were conducted to identify genes with an increased number of variants among SCD cases compared to matched controls. Results: Eleven genes were associated with SCD, but after correction for multiple testing, none of the 174 genes were identified as having more variants in the SCD cases than the matched controls, including previously identified genes. Secondary burden tests grouping variants based on diseases and gene function did not produce statistically significant associations. Discussion/conclusions: We found no associations between genes known to be associated with ICCs and SCD in our sample of patients undergoing hemodialysis. This suggests that genetic causes are unlikely to be a major pathogenic factor in SCD in hemodialysis patients, although our sample size limits definitive conclusions.