- Browse by Author
Browsing by Author "ADNI"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Characterizing Heterogeneity in Neuroimaging, Cognition, Clinical Symptoms, and Genetics Among Patients With Late-Life Depression(American Medical Association, 2022) Wen, Junhao; Fu, Cynthia H. Y.; Tosun, Duygu; Veturi, Yogasudha; Yang, Zhijian; Abdulkadir, Ahmed; Mamourian, Elizabeth; Srinivasan, Dhivya; Skampardoni, Ioanna; Singh, Ashish; Nawani, Hema; Bao, Jingxuan; Erus, Guray; Shou, Haochang; Habes, Mohamad; Doshi, Jimit; Varol, Erdem; Mackin, R. Scott; Sotiras, Aristeidis; Fan, Yong; Saykin, Andrew J.; Sheline, Yvette I.; Shen, Li; Ritchie, Marylyn D.; Wolk, David A.; Albert, Marilyn; Resnick, Susan M.; Davatzikos, Christos; iSTAGING consortium; ADNI; BIOCARD; BLSA; Radiology and Imaging Sciences, School of MedicineImportance: Late-life depression (LLD) is characterized by considerable heterogeneity in clinical manifestation. Unraveling such heterogeneity might aid in elucidating etiological mechanisms and support precision and individualized medicine. Objective: To cross-sectionally and longitudinally delineate disease-related heterogeneity in LLD associated with neuroanatomy, cognitive functioning, clinical symptoms, and genetic profiles. Design, setting, and participants: The Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) study is an international multicenter consortium investigating brain aging in pooled and harmonized data from 13 studies with more than 35 000 participants, including a subset of individuals with major depressive disorder. Multimodal data from a multicenter sample (N = 996), including neuroimaging, neurocognitive assessments, and genetics, were analyzed in this study. A semisupervised clustering method (heterogeneity through discriminative analysis) was applied to regional gray matter (GM) brain volumes to derive dimensional representations. Data were collected from July 2017 to July 2020 and analyzed from July 2020 to December 2021. Main outcomes and measures: Two dimensions were identified to delineate LLD-associated heterogeneity in voxelwise GM maps, white matter (WM) fractional anisotropy, neurocognitive functioning, clinical phenotype, and genetics. Results: A total of 501 participants with LLD (mean [SD] age, 67.39 [5.56] years; 332 women) and 495 healthy control individuals (mean [SD] age, 66.53 [5.16] years; 333 women) were included. Patients in dimension 1 demonstrated relatively preserved brain anatomy without WM disruptions relative to healthy control individuals. In contrast, patients in dimension 2 showed widespread brain atrophy and WM integrity disruptions, along with cognitive impairment and higher depression severity. Moreover, 1 de novo independent genetic variant (rs13120336; chromosome: 4, 186387714; minor allele, G) was significantly associated with dimension 1 (odds ratio, 2.35; SE, 0.15; P = 3.14 ×108) but not with dimension 2. The 2 dimensions demonstrated significant single-nucleotide variant-based heritability of 18% to 27% within the general population (N = 12 518 in UK Biobank). In a subset of individuals having longitudinal measurements, those in dimension 2 experienced a more rapid longitudinal change in GM and brain age (Cohen f2 = 0.03; P = .02) and were more likely to progress to Alzheimer disease (Cohen f2 = 0.03; P = .03) compared with those in dimension 1 (N = 1431 participants and 7224 scans from the Alzheimer's Disease Neuroimaging Initiative [ADNI], Baltimore Longitudinal Study of Aging [BLSA], and Biomarkers for Older Controls at Risk for Dementia [BIOCARD] data sets). Conclusions and relevance: This study characterized heterogeneity in LLD into 2 dimensions with distinct neuroanatomical, cognitive, clinical, and genetic profiles. This dimensional approach provides a potential mechanism for investigating the heterogeneity of LLD and the relevance of the latent dimensions to possible disease mechanisms, clinical outcomes, and responses to interventions.Item Hippocampal Surface Mapping of Genetic Risk Factors in AD via Sparse Learning Models(Office of the Vice Chancellor for Research, 2012-04-13) Wan, Jing; Kim, Sungeun; Inlow, Mark; Nho, Kwangsik; Swaminathan, Shanker; Risacher, Shannon L.; Fang, Shiaofen; Weiner, Michael W.; Beg, M. Faisal; Wang, Lei; Saykin, Andrew J.; Shen, Li; ADNIGenetic mapping of hippocampal shape, an under-explored area, has strong potential as a neurodegeneration biomarker for AD and MCI. This study investigates the genetic effects of top candidate single nucleotide polymorphisms (SNPs) on hippocampal shape features as quantitative traits (QTs) in a large cohort. FS+LDDMM was used to segment hippocampal surfaces from MRI scans and shape features were extracted after surface registration. Elastic net (EN) and sparse canonical correlation analysis (SCCA) were proposed to examine SNP-QT associations, and compared with multiple regression (MR). Although similar in power, EN yielded substantially fewer predictors than MR. Detailed surface mapping of global and localized genetic effects were identified by MR and EN to reveal multi-SNP-single-QT relationships, and by SCCA to discover multi-SNP-multi-QT associations. Shape analysis identified stronger SNP-QT correlations than volume analysis. Sparse multivariate models have greater power to reveal complex SNP-QT relationships. Genetic analysis of quantitative shape features has considerable potential for enhancing mechanistic understanding of complex disorders like AD.Item Identifying Neuroimaging and Proteomic Biomarkers for MCI and AD via the Elastic Net(Office of the Vice Chancellor for Research, 2012-04-13) Shen, Li; Kim, Sungeun; Qi, Yuan; Inlow, Mark; Swaminathan, Shanker; Nho, Kwangsik; Wan, Jing; Risacher, Shannon L.; Shaw, Leslie M.; Trojanowski, John Q.; Weiner, Michael W.; Saykin, Andrew J.; ADNIAbstract Multi-modal neuroimaging and biomarker data provide exciting opportunities to enhance our understanding of phenotypic characteristics associated with complex disorders. This study focuses on integrative analysis of structural MRI data and proteomic data from an RBM panel to examine their predictive power and identify relevant biomarkers in a large MCI/AD cohort. MRI data included volume and thickness measures of 98 regions estimated by FreeSurfer. RBM data included 146 proteomic analytes extracted from plasma and serum. A sparse learning model, elastic net logistic regression, was proposed to classify AD and MCI, and select disease-relevant biomarkers. A linear support vector machine coupled with feature selection was employed for comparison. Combining RBM and MRI data yielded improved prediction rates: HC vs AD (91.9%), HC vs MCI (90.5%) and MCI vs AD (86.5%). Elastic net identified a small set of meaningful imaging and proteomic biomarkers. The elastic net has great power to optimize the sparsity of feature selection while maintaining high predictive power. Its application to multi-modal imaging and biomarker data has considerable potential for discovering biomarkers and enhancing mechanistic understanding of AD and MCI.Item Predicting Interrelated Alzheimer's Disease Outcomes via New Self-Learned Structured Low-Rank Model(Springer, 2017-06) Wang, Xiaoqian; Liu, Kefei; Yan, Jingwen; Risacher, Shannon L.; Saykin, Andrew J.; Shen, Li; Huang, Heng; ADNI; Radiology and Imaging Sciences, School of MedicineAlzheimer's disease (AD) is a progressive neurodegenerative disorder. As the prodromal stage of AD, Mild Cognitive Impairment (MCI) maintains a good chance of converting to AD. How to efficaciously detect this conversion from MCI to AD is significant in AD diagnosis. Different from standard classification problems where the distributions of classes are independent, the AD outcomes are usually interrelated (their distributions have certain overlaps). Most of existing methods failed to examine the interrelations among different classes, such as AD, MCI conversion and MCI non-conversion. In this paper, we proposed a novel self-learned low-rank structured learning model to automatically uncover the interrelations among different classes and utilized such interrelated structures to enhance classification. We conducted experiments on the ADNI cohort data. Empirical results demonstrated advantages of our model.