Hamid Dalir

Permanent URI for this collection

Lighter Composite Parts for Automotive and Aerospace Structures

While conventional carbon fiber composites are being widely used in aerospace and defense sectors, their layered nature causes interlaminar strength disadvantages leading to their premature failure under operational loading. After working for almost eight years in composites R&D for aerospace and defense and understanding the key challenges, Professor Dalir, along with Professor Mangilal Agarwal and Professor Amanda Siegel, started investigating the use of fine filaments ("'100 nm) of Carbon Nanotube/Epoxy nanocomposites developed as part of this project at INDI enabling the industry a potential 30% additional weight saving.

Manufacturing lighter but tougher structures motivated the researchers to inaugurate a university startup named "Multiscale Integrated Technology Solutions LLC" in June of 2019 where the focus has been on working with companies such as Dallara, SRAM, and Bauer to reduce the weight and cost of their parts which means less use of non-eco-friendly carbon fibers leading to lower CO2 emissions improving the quality of life of our nation. In 2021, they secured several grants and investments on their technology. They also won a statewide competition held by Indiana Elevate Nexus, which resulted in investments from the state in their technology.

They also received over $400,000.00 grants from various agencies including National Science Foundation (NSF), Indiana Economic Development Corporation (IEDC), and Elevate, among others. In addition, they have been featured in several interviews such as "Inside Indiana Business", "Tech Talk with Steve Sweitzer'', "FOX 59", and "WTHR".

They anticipate additional investments in 2022. MITS has secured the key IP from IUPUI including full rights to develop, exercise, license, sublicense, market, and sell technologies related to the material system proposed in this research.

Professor Dalir's translation of research into advanced, eco-friendly automotive and aerospace structures is another excellent example of how IUPUI's faculty members are TRANSLATING their RESEARCH INTO PRACTICE.

Browse