HYDRAULIC WIND POWER DROOP ANALYSIS

dc.contributor.authorSajadian, Sally
dc.contributor.authorPusha, Ayana
dc.contributor.authorIzadian, Afshin
dc.date.accessioned2016-01-06T19:30:39Z
dc.date.available2016-01-06T19:30:39Z
dc.date.issued2012-04-13
dc.descriptionposter abstracten_US
dc.description.abstractThe power transferred from the wind turbine to the generator is im-portant to keep the systems active, power balance and droop frequency con-trol when connected to a network. This is important to ensure maximum power output obtained from wind velocity. When there is a change present in the real power demand at a point in the network, it is reflected throughout the system by fluctuation in frequency. If a drop in frequency occurs the generator will decelerate at a rate determined by the moment of inertia plus all the masses connected to its shaft. This results in the conversion of kinet-ic energy of the generator to electrical energy thus giving a power surge. If there is an increase in the system frequency, the inverse is true. Hydraulic wind power provides opportunities for multiple wind turbine energy collection and central generation. The system has many benefits over direct driver counterparts including simple structure and opportunities for energy storage units. However, as the system relies on hydraulic connection of wind turbine and generators, it exhibits a nonlinear power and speed characteristics. This poster will analyze the effect of increasing the hydraulic wind turbines on the droop characteristics of the system. Several wind speeds and loading conditions have determined that adding wind turbines to the hydraulic energy transfer system will increase the frequency stability of the system. Some of the hydraulic prime mover characteristics will be identi-fied through experimental results from our prototype in Dr. Izadian’s labora-tory. This research was supported by IUPUI Solution Center.en_US
dc.identifier.citationSally Sajadian, Ayana Pusha,and Dr. Afshin Izadian. (2012, April 13). HYDRAULIC WIND POWER DROOP ANALYSIS. Poster session presented at IUPUI Research Day 2012, Indianapolis, Indiana.en_US
dc.identifier.urihttps://hdl.handle.net/1805/7899
dc.language.isoen_USen_US
dc.publisherOffice of the Vice Chancellor for Researchen_US
dc.subjectwind turbineen_US
dc.subjectdroop frequencyen_US
dc.subjectpower outputen_US
dc.subjectgeneratorsen_US
dc.titleHYDRAULIC WIND POWER DROOP ANALYSISen_US
dc.typePosteren_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pusha-Hydraulic.pdf
Size:
29.29 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: