Modified Through-Flow Wave-Rotor Cycle with Combustor-Bypass Ducts
Date
Language
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
A wave-rotor cycle is described that avoids the inherent problem of combustor exhaust gas recirculation (EGR) found in four-port, through-flow (uniflow) pressure-gain wave-rotor cycles currently under consideration for topping gas-turbine engines. The recirculated hot gas is eliminated by the judicious placement of a bypass duct that transfers gas from one end of the rotor to the other. The resulting cycle, when analyzed numerically, yields a mean absolute temperature for the rotor that is 18% below the already impressive value (approximately the turbine inlet temperature) predicted for the conventional four-port cycle. The absolute temperature of the gas leading to the combustor is also reduced from the conventional design by 17%. The overall design-point pressure ratio of this new bypass cycle is approximately the same as the conventional cycle. This paper will describe the EGR problem and the bypass-cycle solution, including relevant wave diagrams. Performance estimates of design and off-design operation of a specific wave rotor will be presented. The results were obtained using a one-dimensional numerical simulation and design code.