Asymptotics of the Fredholm determinant corresponding to the first bulk critical universality class in random matrix models
dc.contributor.advisor | Its, Alexander R. | |
dc.contributor.author | Bothner, Thomas Joachim | |
dc.contributor.other | Bleher, Pavel, 1947- | |
dc.contributor.other | Tarasov, Vitaly | |
dc.contributor.other | Eremenko, Alexandre | |
dc.contributor.other | Mukhin, Evgeny | |
dc.date.accessioned | 2013-11-06T15:22:16Z | |
dc.date.available | 2013-11-06T15:22:16Z | |
dc.date.issued | 2013-11-06 | |
dc.degree.date | 2013 | en_US |
dc.degree.discipline | Department of Mathematical Sciences | en_US |
dc.degree.grantor | Purdue University | en_US |
dc.degree.level | Ph.D. | en_US |
dc.description | Indiana University-Purdue University Indianapolis (IUPUI) | en_US |
dc.description.abstract | We study the one-parameter family of determinants $det(I-\gamma K_{PII}),\gamma\in\mathbb{R}$ of an integrable Fredholm operator $K_{PII}$ acting on the interval $(-s,s)$ whose kernel is constructed out of the $\Psi$-function associated with the Hastings-McLeod solution of the second Painlev\'e equation. In case $\gamma=1$, this Fredholm determinant describes the critical behavior of the eigenvalue gap probabilities of a random Hermitian matrix chosen from the Unitary Ensemble in the bulk double scaling limit near a quadratic zero of the limiting mean eigenvalue density. Using the Riemann-Hilbert method, we evaluate the large $s$-asymptotics of $\det(I-\gamma K_{PII})$ for all values of the real parameter $\gamma$. | en_US |
dc.identifier.uri | https://hdl.handle.net/1805/3655 | |
dc.identifier.uri | http://dx.doi.org/10.7912/C2/2394 | |
dc.language.iso | en_US | en_US |
dc.subject | Integrable operators, Riemann-Hilbert approach, Deift-Zhou method, asymptotical analysis of Fredholm determinants | en_US |
dc.subject.lcsh | Fredholm equations -- Numerical solutions | en_US |
dc.subject.lcsh | Fredholm operators -- Research | en_US |
dc.subject.lcsh | Linear operators | en_US |
dc.subject.lcsh | Riemann-Hilbert problems | en_US |
dc.subject.lcsh | Random matrices | en_US |
dc.subject.lcsh | Integral equations -- Numerical solutions | en_US |
dc.subject.lcsh | Structural dynamics -- Mathematical models | en_US |
dc.subject.lcsh | Eigenvalues -- Research | en_US |
dc.subject.lcsh | Operator theory | en_US |
dc.title | Asymptotics of the Fredholm determinant corresponding to the first bulk critical universality class in random matrix models | en_US |