Asymptotics of the Fredholm determinant corresponding to the first bulk critical universality class in random matrix models

dc.contributor.advisorIts, Alexander R.
dc.contributor.authorBothner, Thomas Joachim
dc.contributor.otherBleher, Pavel, 1947-
dc.contributor.otherTarasov, Vitaly
dc.contributor.otherEremenko, Alexandre
dc.contributor.otherMukhin, Evgeny
dc.date.accessioned2013-11-06T15:22:16Z
dc.date.available2013-11-06T15:22:16Z
dc.date.issued2013-11-06
dc.degree.date2013en_US
dc.degree.disciplineDepartment of Mathematical Sciencesen_US
dc.degree.grantorPurdue Universityen_US
dc.degree.levelPh.D.en_US
dc.descriptionIndiana University-Purdue University Indianapolis (IUPUI)en_US
dc.description.abstractWe study the one-parameter family of determinants $det(I-\gamma K_{PII}),\gamma\in\mathbb{R}$ of an integrable Fredholm operator $K_{PII}$ acting on the interval $(-s,s)$ whose kernel is constructed out of the $\Psi$-function associated with the Hastings-McLeod solution of the second Painlev\'e equation. In case $\gamma=1$, this Fredholm determinant describes the critical behavior of the eigenvalue gap probabilities of a random Hermitian matrix chosen from the Unitary Ensemble in the bulk double scaling limit near a quadratic zero of the limiting mean eigenvalue density. Using the Riemann-Hilbert method, we evaluate the large $s$-asymptotics of $\det(I-\gamma K_{PII})$ for all values of the real parameter $\gamma$.en_US
dc.identifier.urihttps://hdl.handle.net/1805/3655
dc.identifier.urihttp://dx.doi.org/10.7912/C2/2394
dc.language.isoen_USen_US
dc.subjectIntegrable operators, Riemann-Hilbert approach, Deift-Zhou method, asymptotical analysis of Fredholm determinantsen_US
dc.subject.lcshFredholm equations -- Numerical solutionsen_US
dc.subject.lcshFredholm operators -- Researchen_US
dc.subject.lcshLinear operatorsen_US
dc.subject.lcshRiemann-Hilbert problemsen_US
dc.subject.lcshRandom matricesen_US
dc.subject.lcshIntegral equations -- Numerical solutionsen_US
dc.subject.lcshStructural dynamics -- Mathematical modelsen_US
dc.subject.lcshEigenvalues -- Researchen_US
dc.subject.lcshOperator theoryen_US
dc.titleAsymptotics of the Fredholm determinant corresponding to the first bulk critical universality class in random matrix modelsen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BothnerPhDthesis.pdf
Size:
866.68 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: