REMOTE SENSING DATA ASSIMILATION IN WATER QUALITY NUMERICAL MODELS FOR SIMULATION OF WATER COLUMN TEMPERATURE

If you need an accessible version of this item, please submit a remediation request.
Date
2012-03-16
Language
American English
Embargo Lift Date
Department
Committee Chair
Committee Members
Degree
M.S.
Degree Year
2011
Department
Earth Sciences
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Numerical models are important tools for simulating processes within complex natural systems, such as hydrodynamics and water quality processes within a water body. From decision makers’ perspectives, such models also serve as useful tools for predicting the impacts of water quality problems or develop early warning systems. However, accuracy of a numerical model developed for a specific site is dependent on multiple model parameters and variables whose values are attained via calibration processes and/or expert knowledge. Real time variations in the actual aquatic system at a site necessitate continuous monitoring of the system so that model parameters and variables are regularly updated to reflect accurate conditions. Multiple sources of observations can help adjust the model better by providing benefits of individual monitoring technology within the model updating process. For example, remote sensing data provide a spatially dense dataset of model variables at the surface of a water body, while in-situ monitoring technologies can provide data at multiple depths and at more frequent time intervals than remote sensing technologies. This research aims to present an overview of an integrated modeling and data assimilation framework that combines three-dimensional numerical model with multiple sources of observations to simulate water column temperature in a eutrophic reservoir in central Indiana. A variational data assimilation approach is investigated for incorporating spatially continuous remote sensing observations and spatially discrete in-situ observations to change initial conditions of the numerical model. This research addresses the challenge of improving the model performance by combining water temperature from multi-spectral remote sensing analysis and in-situ measurements. Results of the approach on a eutrophic reservoir in Central Indiana show that with four images of multi-spectral remote sensing data assimilated, the model results oscillate more from the in-situ measurements during the data assimilation period. For validation, the data assimilation has negative impacts on the root mean square error. According to quantitative analysis, more significant water temperature stratification leads to larger deviations. Sampling depth differences for remote sensing technology, in-situ measurements and model output are considered as possible error source.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}