SIRT1 DEFICIENCY COMPROMISES MOUSE EMBRYONIC STEM CELL DIFFERENTIATION, AND EMBRYONIC AND ADULT HEMATOPOIESIS IN THE MOUSE

Date
2011-03-16
Authors
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2010
Department
Department of Microbiology and Immunology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

SIRT1 (Sirtuin 1) is a founding member of a family of seven proteins and histone deacetylases. It is involved in cellular resistance to stress, metabolism, differentiation, aging, and tumor suppression. SIRT1-/- mice demonstrate embryonic and postnatal development defects. We examined hematopoietic and endothelial cell differentiation of SIRT1-/- mouse embryonic stem (mES) cells in vitro, and hematopoietic progenitors in SIRT1+/+, SIRT1+/-, and SIRT1-/- mice. SIRT1-/- ES cells exhibited markedly delayed/immature formation of blast colony-forming cells (BL-CFCs). When individual blast colonies were analyzed for hematopoietic and endothelial potential, replated SIRT1-/- BL-CFC possessed limited hematopoietic potential, whereas endothelial potential was essentially unaltered. The ability of SIRT1-/- ES cells to form primitive erythroid progenitors was not only delayed but greatly decreased. Moreover, after differentiation of SIRT1-/- mES cells, there were also significant decreases in granulocyte-macrophage (CFU-GM) and multipotential (CFU-GEMM) progenitor cells. Differentiation delay/defects were associated with delayed capacity to switch off Oct4, Nanog and Fgf5, decreased β-H1 globin, β-major globin, and Scl gene expression and reduced activation of the Erk1/2 pathway upon SIRT1-/- ES cell commitment. Reintroduction of WT SIRT1 into SIRT1-/- cells partially rescued the primitive erythroid progenitor formation of SIRT1-/- cells and the expression of hemoglobin genes, Hbb-bh1 and Hbb-b1, suggesting that the defect of hematopoietic commitment is due to deletion of SIRT1, and not to genetic drifting of SIRT1-/- cells. To confirm the requirement for SIRT1 for normal development of hematopoietic progenitor cells, we assessed embryonic and adult hematopoiesis in SIRT1+/+, SIRT1+/- and SIRT1-/- mice. Yolk sacs from SIRT1 mutant embryos generated fewer primitive erythroid precursors compared to wild-type (WT) and heterozygous mice. Moreover, knockout of SIRT1 decreased primary bone marrow hematopoietic progenitor cells (HPCs) in 5 week and 12 month old mice, which was especially notable at lower (5%) O2 tension. In addition these progenitors survived less well in vitro under conditions of delayed growth factor addition. Taken together, these results demonstrate that SIRT1 plays a role in ES cell hematopoietic differentiation and mouse hematopoiesis.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}