Asset allocation in frequency and in 3 spatial dimensions for electronic warfare application

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2016-04
Language
American English
Embargo Lift Date
Department
Degree
M.S.E.C.E.
Degree Year
2016
Department
Electrical & Computer Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

This paper describes two research areas applied to Particle Swarm Optimization (PSO) in an electronic warfare asset scenario. First, a three spatial dimension solution utilizing topographical data is implemented and tested against a two dimensional solution. A three dimensional (3D) optimization increases solution space for optimization of asset location. Topography from NASA's Digital Elevation Model is also added to the solution to provide a realistic scenario. The optimization is tested for run time, average distances between receivers, average distance between receivers and paired transmitters, and transmission power. Due to load times of maps and increased iterations, the average run times were increased from 123ms to 178ms, which remains below the 1 second target for convergence speeds. The spread distance between receivers was able to increase from 86km to 89km. The distance between receiver and its paired transmitters as well as the total received power did not change signi cannily. In the second research contribution, a user input is created and placed into an unconstrained 2D active swarm. This \human in the swarm" scenario allows a user to change keep-away boundaries during optimization. The blended human and swarm solution successfully implemented human input into a running optimization with a time delay. The results of this research show that a electronic warfare solutions with real 3D topography can be simulated with minimal computational costs over two dimensional solutions and that electronic warfare solutions can successfully optimize using human input data.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}