INTRINSIC DISORDER, SCAFFOLDS, AND STOCHASTIC MACHINES

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2010-04-09
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

Scaffold proteins bind additional proteins that then carry out multi-step pathways. How do such machines work? Here a new hypothesis is proposed for the complex consisting of axin, two kinases – GSK3β and CK1α, and β-catenin. The pathway involves four discrete phosphorylations of β-catenin by the two kinases. Like many other scaffold proteins, axin is mostly unstructured [1, 2]. With a length of about 800 residues, axin forms two small domains of less than 100 residues each, and uses only a small number of residues, about 20 per interaction, to bind to GSK3β and β-catenin [1], and presumably also to bind to CK1α. Thus, even with the two domains and 3 partners, axin remains mostly unfolded. The hypothesis is that the unstructured axin molecule holds the three globular proteins in very high local concentrations, like three globules on a rope, and that, by random motions, first CK1α and then GSK3β phosphorylate the disordered tail of β-catenin successively four times. The “conformational changes” of axin that lead to acceleration of phosphorylation are neither specific nor coordinated, but rather are entirely stochastic, with stereochemical fit between the enzymes and their targets leading to the correct ordering of the four phosphorylation steps. In this hypothesis, the scaffold protein acts simply as a flexible tether that leads to acceleration of the multiple steps in the pathway by raising the local concentrations of the key components and by allowing the various components the freedom to collide in various orientations until productive collisions result. Thus, the steps of the pathway are carried out by a stochastic machine. This may be a general mechanism for scaffold-based molecular machines.

Description
poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
A. Keith Dunker, Bin Xue, Albert William, and Vladimir N. Uversky. (2010, April 9). INTRINSIC DISORDER, SCAFFOLDS, AND STOCHASTIC MACHINES. Poster session presented at IUPUI Research Day 2010, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}