Identifying Potential Proteasomal assembly factors and/or binding proteins using the yeast Saccharomyces cerevisiae as a model organism

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2015-04-17
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

The proteasome is a large multi-protein complex responsible for the ultimate degradation of proteins in the cell. Damaged or misfolded proteins are targeted for destruction and broken down into peptides. Proteasomal degradation plays a vital role in almost every cellular process, from the cell cycle, to cell development, to apoptosis. Moreover, understanding and identifying the proteasome assembly process, important binding factors, and chaperones that assist in proteasome assembly would be pivotal in developing strategies to remedy cellular disorders caused by defects in proteasomal function. The eukaryotic proteasome is composed of two main sub-complexes, a 20S core particle and a 19S regulatory particle that caps one or both ends of the 20S core particle. The 20S core particle is the degradation component of the proteasome, and it is made up of 14 unique subunits with seven distinct α and β subunits that assemble into four stacked heteroheptameric rings. On the β7 subunit, there is a C-terminal peptide tail that connects two halves of the 20S core particle. Previous research has shown that deletion of the β7 tail slows down proteasome assembly. We generated a yeast strain containing a deletion of the β7 tail along with deletion of two assembly factors, Pba1p and Ump1p. This strain is severely temperature sensitive and will be used to screen a plasmid-borne yeast genomic library. The goal is to potentially identify new proteasomal chaperones and/or binding partners which, when present in high copy, can overcome the defect imposed by the triple mutant.

Description
poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Nicole Lindsay, Lindsay Hammack, and Andrew Kusmiercyzk. 2015 April 17. Identifying Potential Proteasomal assembly factors and/or binding proteins using the yeast Saccharomyces cerevisiae as a model organism. Poster session presented at IUPUI Research Day 2015, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}