Examining Postnatal Retinal Thickness and Retinal Ganglion Cell Count in the Ts65Dn Mouse Model of Down Syndrome

Date
2023-05
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.
Degree Year
2023
Department
Department of Biology
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Down syndrome (DS) is a genetic condition caused by the triplication of human chromosome 21 and presents with many phenotypes including decreased brain size, hypocellularity in the brain, and assorted ocular phenotypes. Some of the ocular phenotypes seen are increased risk of cataracts, accommodation difficulties, increased risk of refractive errors, and increased retinal thickness. The Ts65Dn mouse model of DS is a classically used mouse model as it presents a number of phenotypes also seen in those with DS. Some of these phenotypes include decreased brain volume, abnormal synaptic plasticity, and ocular phenotypes. These ocular phenotypes include decreased visual acuity, cataracts, and increased retinal thickness. The Ts65Dn mouse model is trisomic for Dyrk1a, a gene of interest in DS research. We hypothesize that there will be a genotypic and sex effect of retinal thickness and retinal ganglion cell (RGC) count at postnatal day 15 in the Ts65Dn mouse model of DS. Retinal slices were taken from male and female trisomic and euploid Ts65Dn mice at P15 and fluorescently labeled for RGCs and bipolar cells via immunohistochemistry. The retinas were measured for total retinal thickness and RNA-binding protein (RBPMS) positive cells in the RGC layer were counted. There was no genotypic or sex effect when comparing retinal thickness in trisomic mice as compared to euploid mice. There was a genotypic effect of RBPMS positive cell count in which the trisomic mice had a higher number of RBPMS positive cells than euploid mice. Increased retinal thickness along with increased RGC number have both been implicated with decreased apoptosis in the retina. In the Ts65Dn mouse model along with in individuals with DS, this could be due to an increase in DYRK1A protein levels reducing apoptosis. In future studies, determining DYRK1A’s influence in retinal thickness and RGC number could result in a treatment for overactive DYRK1A that could normalize retinal thickness and RGC number in those with DS.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}