Alterations in Canine Vertebral Bone Turnover, Microdamage Accumulation, and Biomechanical Properties following 1-year Treatment with Clinical Treatment Doses of Risedronate or Alendronate

If you need an accessible version of this item, please submit a remediation request.
Date
2006-10
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

One year of treatment with bisphosphonates at 5x the dose used for post-menopausal osteoporosis significantly increases failure load and microdamage, and decreases toughness at multiple skeletal sites in intact female beagles. The goal of this study was to determine if similar changes occur with doses equivalent to those used for post-menopausal osteoporosis treatment. Skeletally-mature female beagles were treated daily for 1 year with vehicle (VEH) or one of three doses of risedronate (RIS; 0.05, 0.10, 0.50 mg/kg/day) or alendronate (ALN; 0.10, 0.20, 1.00 mg/kg/day). Doses of ALN corresponded to treatment dose for PMO, 1/2 that dose, and 5x that dose on a mg/kg basis; RIS was given at a dose-equivalent to ALN. Vertebral density, geometry, percent ash, static/dynamic histology, microdamage, and biomechanical parameters were quantified. Trabecular bone activation frequency (Ac.f) was dose-dependently lower in RIS-treated groups (-40%, -66%, -84%, P < 0.05 vs. VEH) while the three ALN groups were all similarly lower compared to VEH (-65%, -71%, -76%; P <0.05). Crack surface density (Cr.S.Dn) was significantly higher than VEH for all doses of RIS and ALN (+2.9 to 5.4-fold vs. VEH). Stiffness was significantly increased with both agents while there were no significant changes in any other structural or estimated material properties. Cr.S.Dn and Ac.f exhibited a significant non-linear correlation (r(2) = 0.21; P < 0.001) while there was no relationship between Cr.S.Dn and any mechanical properties. These results document that 1 year of bisphosphonate treatment at clinical doses allows significant accumulation of microdamage in the vertebra but this is offset by increases in bone volume and mineralization such that there is no significant impairment of mechanical properties.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Allen MR, Iwata K, Phipps R, Burr DB. Alterations in canine vertebral bone turnover, microdamage accumulation, and biomechanical properties following 1-year treatment with clinical treatment doses of risedronate or alendronate. Bone. 2006 Oct;39(4):872-9. Epub 2006 Jun 12.
ISSN
Publisher
http://dx.doi.org/10.1016/j.bone.2006.04.028
Series/Report
Sponsorship
The authors thank Dr. Keith Condon, Diana Jacob, Mary Hooser, and Lauren Waugh for histological preparation and Dr. Charles Turner for his assistance with mechanical testing. This work was supported by NIH Grants 5R01AR047838 and 5T32AR007581 and a research grant from The Alliance for Better Bone Health (Procter & Gamble Pharmaceuticals and sanofi-aventis). Merck and Co. kindly provided the alendronate. This investigation utilized an animal facility constructed with support from Research Facilities Improvement Program Grant Number C06RR10601 from the NIH National Center for Research Resources.
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}