3d terrain visualization and CPU parallelization of particle swarm optimization

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2018
Language
American English
Embargo Lift Date
Department
Committee Chair
Committee Members
Degree
M.S.E.C.E.
Degree Year
2018
Department
Electrical & Computer Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Particle Swarm Optimization is a bio-inspired optimization technique used to approximately solve the non-deterministic polynomial (NP) problem of asset allocation in 3D space, frequency, antenna azimuth [1], and elevation orientation [1]. This research uses QT Data Visualization to display the PSO solutions, assets, transmitters in 3D space from the work done in [2]. Elevation and Imagery data was extracted from ARCGIS (a geographic information system (GIS) database) to add overlapping elevation and imagery data to that the 3D visualization displays proper topological data. The 3D environment range was improved and is now dynamic; giving the user appropriate coordinates based from the ARCGIS latitude and longitude ranges. The second part of the research improves the performance of the PSOs runtime, using OpenMP with CPU threading to parallelize the evaluation of the PSO by particle. Lastly, this implementation uses CPU multithreading with 4 threads to improve the performance of the PSO by 42% - 51% in comparison to running the PSO without CPU multithreading. The contributions provided allow for the PSO project to be more realistically simulate its use in the Electronic Warfare (EW) space, adding additional CPU multithreading implementation for further performance improvements.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}