Tsg-6 : an inducible mediator of paracrine anti-inflammatory and myeloprotective effects of adipose stem cells

Date
2014-01-29
Authors
Language
American English
Embargo Lift Date
Department
Degree
Ph.D.
Degree Year
2012
Department
Department of Cellular & Integrative Physiology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Tumor necrosis factor-induced protein 6 (TSG-6) has been shown to mitigate inflammation. Its presence in the secretome of adipose stem / stromal cells (ASC) and its role in activities of ASC have been overlooked. This thesis described for the first time the release of TSG-6 from ASC, and its modulation by endothelial cells. It also revealed that protection of endothelial barrier function was a novel mechanism underlying the anti-inflammatory activity of both ASC and TSG-6. Moreover, TSG-6 was found to inhibit mitogen-activated lymphocyte proliferation, extending the understanding of its pleiotropic effects on major cell populations involved in inflammation. Next, enzyme-linked immunosorbent assays (ELISA) were established to quantify secretion of TSG-6 from human and murine ASC. To study the importance of TSG-6 to specific activities of ASC, TSG-6 was knocked down in human ASC by siRNA. Murine ASC from TSG-6-/- mice were isolated and the down-regulation of TSG-6 was verified by ELISA. The subsequent attempt to determine the efficacy of ASC in ameliorating ischemic limb necrosis and the role of TSG-6, however, was hampered by the highly variable ischemic tissue necrosis in the BALB/c mouse strain. Afterwards in a mouse model of cigarette smoking (CS), in which inflammation also plays an important role, it was observed, for the first time, that 3-day CS exposure caused an acute functional exhaustion and cell cycle arrest of hematopoietic progenitor cells; and that 7-week CS exposure led to marked depletion of phenotypic bone marrow stem and progenitor cells (HSPC). Moreover, a dynamic crosstalk between human ASC and murine host inflammatory signals was described, and specifically TSG-6 was identified as a necessary and sufficient mediator accounting for the activity of the ASC secretome to ameliorate CS-induced myelotoxicity. These results implicate TSG-6 as a key mediator for activities of ASC in mitigation of inflammation and protection of HSPC from the myelotoxicity of cigarette smoke. They also prompt the notion that ASC and TSG-6 might potentially play therapeutic roles in other scenarios involving myelotoxicity.

Description
Indiana University-Purdue University Indianapolis (IUPUI).
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}