Effect of surface conditioning methods on repair bond strength of microhybrid resin matrix composite

Date
2010
Language
American English
Embargo Lift Date
Department
Degree
M.S.D.
Degree Year
2010
Department
School of Dentistry
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Repair is an alternative treatment option in many cases to replacement of resin matrix composite restoration. However, aged resin matrix composites have a limited number of carbon-carbon double bonds to adhere to a new layer of rein. Therefore, surface treatments of the aged resin matrix composite surface prior to repairing could improve the repair bond strength. The objectives of this study were to: 1) To evaluate various surface treatments on shear bond strength of repair between aged and new microhybrid resin matrix composite, and 2) To assess the influence of applying a silane coupling agent after surface treatments. Eighty disk-shaped resin matrix composite specimens were fabricated and thermocycled 5000 times prior to surface treatment. Specimens were randomly assigned to one of the three surface treatments (n = 20): 1) Airborne abrasion with 50 μm aluminum oxide, 2) Tribochemical silica coating (CoJet), or 3) Er,Cr:YSGG laser and control group (n = 20). Specimens were cleaned with 35-percent phosphoric acid, rinsed, and dried. Each group was assigned into two subgroups (n =10): a) no silanization, and b) with silanization. Adhesive agent was applied and new resin matrix composite was bonded to each conditioned surface. Bond strength was evaluated by shear test. Data were analyzed with a two-way ANOVA model. The interaction between conditioning and silanization was significant(p = 0.0163), indicating that comparisons of silanization must be evaluated for each conditioning method, and that comparisons of conditioning methods must be evaluated separately with and without silanization. Airborne particle abrasion showed significantly higher repair bond strength than Er,Cr:YSGG laser without silanization (p < 0.0001) and with silanization(p = 0.0002), and higher repair bond strength than the control without silanization (p < 0.00001) and with silanization (p < 0.00001). Airborne particle abrasion did not have significantly different in repair bond strength than Tribosilica coating without silanization (p = 0.70) or with silanization (p = 0.33). Tribosilica coating had significantly higher repair bond strength than Er,CR:YSGG laser without silanization (p < 0.0001) and with silanization (p < 0.0001), and significantly higher repair bond strength than control without silanization (p < 0.0001), but not with silanization (p =0.16). Er,CR:YSGG laser and control did not have significantly different repair bond strength without silanization (p = 1.00) or with silanization (p = 0.11). There was no effect of silanization on repair bond strength overall (p = 0.34) for any of the surface conditioning methods (p = 0.76 for airborne particle abrasion; p = 0.39 for tribosilica coating; p = 1.00 for Er,Cr:YSGG laser, or p = 0.39 for control). Airborne particle abrasion with 50-μm aluminum oxide particle and tribochemical silica coating followed by the application of bonding agent provided the highest shear bond strength values, suggesting that they might be adequate methods to improve the quality of the repairs of resin-matrix composites.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}