A new family of dc-dc-ac power electronics converters
Date
Authors
Language
Embargo Lift Date
Department
Committee Chair
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
This thesis proposes a family of non-isolated bidirectional converter in order to interface dc and ac variables. Such power electronics solutions guarantee: (i) bidirectional power flow between dc and ac converter sides, (ii) independent control in both converter sides, (iii) high level of integration with a reduction of one power switch and its drive circuits, (iv) implementation of two functions by using a unique power conversion stage and (v) reduction of the capacitor losses. Despite proposing new power converter solutions, this thesis presents an analysis of the converters in terms of pulse-width-modulation (PWM) strategy, dc-link capacitor variables, and suitable a control approach. Solutions for single-phase, three-phase and three-phase four-wire systems are proposed by employing a converter leg with three switches. A possible application of this converter is in Vehicle-to-Grid (V2G) systems and interfacing dc microgrid with a utility grid. In addition to the new power electronics converters proposed in this thesis, an experimental setup has been developed for validation of the simulated outcomes. The proof-of-concept experimental setup is constituted by: DSP, Drivers & Integrating Board, Power Supply and, Power Converter & Heat-Sink .