Chondroitin sulfate proteoglycans regulate the growth, differentiation and migration of multipotent neural precursor cells through the integrin signaling pathway

Date
2009-10-21
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
BioMed Central
Abstract

Background Neural precursor cells (NPCs) are defined by their ability to proliferate, self-renew, and retain the potential to differentiate into neurons and glia. Deciphering the factors that regulate their behaviors will greatly aid in their use as potential therapeutic agents or targets. Chondroitin sulfate proteoglycans (CSPGs) are prominent components of the extracellular matrix (ECM) in the central nervous system (CNS) and are assumed to play important roles in controlling neuronal differentiation and development.

Results In the present study, we demonstrated that CSPGs were constitutively expressed on the NPCs isolated from the E16 rat embryonic brain. When chondroitinase ABC was used to abolish the function of endogenous CSPGs on NPCs, it induced a series of biological responses including the proliferation, differentiation and migration of NPCs, indicating that CSPGs may play a critical role in NPC development and differentiation. Finally, we provided evidence suggesting that integrin signaling pathway may be involved in the effects of CSPGs on NPCs.

Conclusion The present study investigating the influence and mechanisms of CSPGs on the differentiation and migration of NPCs should help us to understand the basic biology of NPCs during CNS development and provide new insights into developing new strategies for the treatment of the neurological disorders in the CNS.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Gu, WL., Fu, SL., Wang, YX. et al. Chondroitin sulfate proteoglycans regulate the growth, differentiation and migration of multipotent neural precursor cells through the integrin signaling pathway. BMC Neurosci 10, 128 (2009). https://doi.org/10.1186/1471-2202-10-128
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
BMC Neuroscience
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}