High Throughput Screening for Modulators of LRRK2 GTPase Activity

Date
2021-06
Language
English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.
Degree Year
2021
Department
Department of Biochemistry & Molecular Biology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects over 10 million people. Treatments for PD are limited to symptom mitigation with no means of stopping or slowing disease progression. Mutations within the protein leucine- rich repeat kinase 2 (LRRK2) are the most common cause of familial PD and are indistinguishable from the more common sporadic cases. Identifying molecules capable of modulating LRRK2 GTPase activity may serve as the foundation for future development of novel PD therapeutics.

We recently discovered that the G-domain (ROC) of LRRK2 is capable of transitioning between monomer and dimer form in solution upon GTP/GDP binding. R1441C/G/H pathogenic mutations were demonstrated to alter this dynamic shifting toward a monomeric ROC conformation while decreasing GTPase activity. Using our ROC dimeric crystal structure, we strategically introduced disulfide bonds to generate locked monomer and locked dimer states. Monomeric ROC was shown to increase GTPase activity while the dimeric form decreased activity.

Solvent mapping performed using the dimeric ROC crystal structure and a homology model of the ROC monomer revealed a binding hotspot at the ROC dimeric interface and adjacent to the R1441 residue in the monomeric model. In this study our goal was to identify more compounds capable of influencing GTPase activity. We performed high throughput screening of ROC against two compound libraries (LOPAC1280 and ChemBridge 50K) in a GTP binding assay. Twenty-three hits were identified and four compounds were further investigated in dose-response experiments. 3,4-Methylenedioxy-beta nitrostyrene (MNS) was demonstrated to decrease GTP binding and inhibit GTPase activity (IC50=23.92μM) while the compound N-phenylanthranilic acid increased GTP binding (EC50=4.969μM) and decreased GTPase activity. Identification of these compounds is the first step in the development of a novel PD therapeutic targeting the G-domain of LRRK2.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}