Duality of Gaudin models
dc.contributor.advisor | Tarasov, Vitaly | |
dc.contributor.author | Uvarov, Filipp | |
dc.contributor.other | Mukhin, Evgeny | |
dc.contributor.other | Its, Alexander | |
dc.contributor.other | Ramras, Daniel | |
dc.date.accessioned | 2020-07-23T10:56:21Z | |
dc.date.available | 2020-07-23T10:56:21Z | |
dc.date.issued | 2020-08 | |
dc.degree.date | 2020 | en_US |
dc.degree.discipline | Mathematical Sciences | en |
dc.degree.grantor | Purdue University | en_US |
dc.degree.level | Ph.D. | en_US |
dc.description | Indiana University-Purdue University Indianapolis (IUPUI) | en_US |
dc.description.abstract | We consider actions of the current Lie algebras $\gl_{n}[t]$ and $\gl_{k}[t]$ on the space $\mathfrak{P}_{kn}$ of polynomials in $kn$ anticommuting variables. The actions depend on parameters $\bar{z}=(z_{1},\dots ,z_{k})$ and $\bar{\alpha}=(\alpha_{1},\dots ,\alpha_{n})$, respectively. We show that the images of the Bethe algebras $\mathcal{B}_{\bar{\alpha}}^{\langle n \rangle}\subset U(\gl_{n}[t])$ and $\mathcal{B}_{\bar{z}}^{\langle k \rangle}\subset U(\gl_{k}[t])$ under these actions coincide. To prove the statement, we use the Bethe ansatz description of eigenvectors of the Bethe algebras via spaces of quasi-exponentials. We establish an explicit correspondence between the spaces of quasi-exponentials describing eigenvectors of $\mathcal{B}_{\bar{\alpha}}^{\langle n \rangle}$ and the spaces of quasi-exponentials describing eigenvectors of $\mathcal{B}_{\bar{z}}^{\langle k \rangle}$. One particular aspect of the duality of the Bethe algebras is that the Gaudin Hamiltonians exchange with the Dynamical Hamiltonians. We study a similar relation between the trigonometric Gaudin and Dynamical Hamiltonians. In trigonometric Gaudin model, spaces of quasi-exponentials are replaced by spaces of quasi-polynomials. We establish an explicit correspondence between the spaces of quasi-polynomials describing eigenvectors of the trigonometric Gaudin Hamiltonians and the spaces of quasi-exponentials describing eigenvectors of the trigonometric Dynamical Hamiltonians. We also establish the $(\gl_{k},\gl_{n})$-duality for the rational, trigonometric and difference versions of Knizhnik-Zamolodchikov and Dynamical equations. | en_US |
dc.identifier.uri | https://hdl.handle.net/1805/23351 | |
dc.identifier.uri | http://dx.doi.org/10.7912/C2/2415 | |
dc.language.iso | en | en_US |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Bethe algebra | en_US |
dc.subject | Gaudin models | en_US |
dc.subject | Bethe ansatz | en_US |
dc.title | Duality of Gaudin models | en_US |
dc.type | Thesis | en |