Robust Understanding of Motor Imagery EEG Pattern in Voice Controlled Prostatic Arm Design

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2015-04-17
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

Introduction: Understanding neural mechanism of communication between human and machine has become more interesting research issue in last few decades. One of the most motivating purposes is to help the people with motor disabilities. This excites researchers to work on the interaction between brain-computer-interfacing (BCI) systems, which in turn needs a fast and accurate algorithm to decode the commands in the brain or electroencephalogram (EEG) signals. EEG signals are very noisy and contain several types of artifacts, so it would be very important to use efficient methods to train the BCI system. Aims and Goals: The goal of this project is to train an intelligent system based on the information in the sample EEG data. This system is going to predict the person’s intention in future experiments with new EEG data. Finally, this project can be used in controlling a moving object like a robot, a wheelchair, or many other devices. Data Acquisition and methods: In this project, we are working with the EEG signals taken from 20 subjects thinking about English vowels \a, \e, \i, \o, and \u. This means we can define only 5 clusters, which contain all signals with similar features. We are going to use part of the signals for training and the rest for testing. In training section, we have to first preprocess the data, and then categorize it into 5 clusters. Robust Principle Component Analysis (PCA) helps us to analyze the data to extract the features. Afterwards based on principle component features of signals, we employ a Hidden Markov Model (HMM) classifier to send similar signals to the same cluster. As EEG data is a randomly variant signal, we are using Hybrid HMM classifier for classification of EEG pattern. Our Initial results are promising in robust understanding of auditory command, which is been explored from EEG pattern analysis.

Description
poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Parisa Ghane, Divya Maridi,and Gahangir Hossain. (2015, April 17). Robust Understanding of Motor Imagery EEG Pattern in Voice Controlled Prostatic Arm Design. Poster session presented at IUPUI Research Day 2015, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}