Identification of genes for complex disease using longitudinal phenotypes

Date
2003-12-31
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
BioMed Central
Abstract

Using the simulated data set from Genetic Analysis Workshop 13, we explored the advantages of using longitudinal data in genetic analyses. The weighted average of the longitudinal data for each of seven quantitative phenotypes were computed and analyzed. Genome screen results were then compared for these longitudinal phenotypes and the results obtained using two cross-sectional designs: data collected near a single age (45 years) and data collected at a single time point. Significant linkage was obtained for nine regions (LOD scores ranging from 5.5 to 34.6) for six of the phenotypes. Using cross-sectional data, LOD scores were slightly lower for the same chromosomal regions, with two regions becoming nonsignificant and one additional region being identified. The magnitude of the LOD score was highly correlated with the heritability of each phenotype as well as the proportion of phenotypic variance due to that locus. There were no false-positive linkage results using the longitudinal data and three false-positive findings using the cross-sectional data. The three false positive results appear to be due to the kurtosis in the trait distribution, even after removing extreme outliers. Our analyses demonstrated that the use of simple longitudinal phenotypes was a powerful means to detect genes of major to moderate effect on trait variability. In only one instance was the power and heritability of the trait increased by using data from one examination. Power to detect linkage can be improved by identifying the most heritable phenotype, ensuring normality of the trait distribution and maximizing the information utilized through novel longitudinal designs for genetic analysis.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Pankratz, N., Mukhopadhyay, N., Huang, S. et al. Identification of genes for complex disease using longitudinal phenotypes. BMC Genet 4, S58 (2003). https://doi.org/10.1186/1471-2156-4-S1-S58
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
BMC Genetics
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}