Elucidating the Characteristics and Functionality of the Mouse Mucosal-Associated Mucosal Invariant T (MAIT) Cell Receptor

Date
2023-08
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.
Degree Year
2023
Department
Department of Microbiology and Immunology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Mucosal-associated invariant T cells (MAIT) are a subset of invariant, innate-like T-cells that are abundant in the gut lamina propria, kidney, lungs, and peripheral blood. MAIT cells are stimulated by the recognition of microbial vitamin B-derived metabolites by the MHC class I-like molecule, MR1. Recent studies have implicated MAIT cells in several autoimmune diseases, various cancers, and CNS disorders, making it essential to design animal models that replicate the human disease state. The relatively small population of MAIT cells in mice makes it difficult to isolate and characterize them. The MAIT cell receptor (TCR) is comprised of a Vα7.2-Jα33 rearrangement in humans and TRAV1-TRAJ33 in mice. This project aimed to create a tool to study mouse MAIT cells in detail by generating lentiviral plasmid constructs expressing cDNAs encoding the MAIT cell TCR α and β chains that will be ectopically expressed in TCR-deficient mouse T cells. A bulk TCR analysis of the mouse MR1-restricted MAIT hybridomas 6C2 and 8D12 was performed to confirm variable and joining regions in the TCR α and β chains. This analysis confirmed the proper MAIT cell TCR usage in the MAIT cell hybridomas. As both MAIT cell hybridomas can be stimulated by MR1-presented antigens, we obtained synthetic cDNAs that were generated for the TRAV1-TRAJ33 α chain and TRBV8.2 (TRBV13-2) β chain. These were subcloned into GFP- and mCherry-expressing plasmids and packaged into lentiviruses that will be used for transduction of TCR-deficient mouse T cells. Flow cytometry and ELISAs will ultimately be performed to confirm the functional expression of the MAIT cell TCR. These tools will greatly facilitate the investigation of MAIT cell function in vitro and the ultimate generation of retrogenic mice for the tracking of MAIT cells in vivo.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}