RMNv2: Reduced Mobilenet V2 an Efficient Lightweight Model for Hardware Deployment

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2020-05
Language
English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.E.C.E.
Degree Year
2020
Department
Electrical & Computer Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Humans can visually see things and can differentiate objects easily but for computers, it is not that easy. Computer Vision is an interdisciplinary field that allows computers to comprehend, from digital videos and images, and differentiate objects. With the Introduction to CNNs/DNNs, computer vision is tremendously used in applications like ADAS, robotics and autonomous systems, etc. This thesis aims to propose an architecture, RMNv2, that is well suited for computer vision applications such as ADAS, etc. RMNv2 is inspired by its original architecture Mobilenet V2. It is a modified version of Mobilenet V2. It includes changes like disabling downsample layers, Heterogeneous kernel-based convolutions, mish activation, and auto augmentation. The proposed model is trained from scratch in the CIFAR10 dataset and produced an accuracy of 92.4% with a total number of parameters of 1.06M. The results indicate that the proposed model has a model size of 4.3MB which is like a 52.2% decrease from its original implementation. Due to its less size and competitive accuracy the proposed model can be easily deployed in resource-constrained devices like mobile and embedded devices for applications like ADAS etc. Further, the proposed model is also implemented in real-time embedded devices like NXP Bluebox 2.0 and NXP i.MX RT1060 for image classification tasks.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}