Non-intrusive Wireless Sensing with Machine Learning

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2023-08
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2023
Department
Electrical & Computer Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

This dissertation explores the world of non-intrusive wireless sensing for diet and fitness activity monitoring, in addition to assessing security risks in human activity recognition (HAR). It delves into the use of WiFi and millimeter wave (mmWave) signals for monitoring eating behaviors, discerning intricate eating activities, and observing fitness movements. The proposed systems harness variations in wireless signal propagation to record human behavior while providing exhaustive details on dietary and exercise habits. Significant contributions encompass unsupervised learning methodologies for detecting dietary and fitness activities, implementing soft-decision and deep neural networks for assorted activity recognition, constructing tiny motion mechanisms for subtle mouth muscle movement recovery, employing space-time-velocity features for multi-person tracking, as well as utilizing generative adversarial networks and domain adaptation structures to enable less cumbersome training efforts and cross-domain deployments. A series of comprehensive tests validate the efficacy and precision of the proposed non-intrusive wireless sensing systems. Additionally, the dissertation probes the security vulnerabilities in mmWave-based HAR systems and puts forth various sophisticated adversarial attacks - targeted, untargeted, universal, and black-box. It designs adversarial perturbations aiming to deceive the HAR models whilst striving to minimize detectability. The research offers powerful insights into issues and efficient solutions relative to non-intrusive sensing tasks and security challenges linked with wireless sensing technologies.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}