In Vivo Effects of Myeloablative Alkylator Therapy on Survival and Differentiation of MGMTP140K-Transduced Human G-CSF-Mobilized Peripheral Blood Cells

Date
2006-05-01
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

High-intensity alkylator-based chemotherapy is required to eradicate tumors expressing high levels of O6-methylguanine DNA methyltransferase (MGMT). This treatment, however, can lead to life-threatening myelosuppression. We investigated a gene therapy strategy to protect human granulocyte colony-stimulating factor-mobilized peripheral blood CD34+ cells (MPB) from a high-intensity alkylator-based regimen. We transduced MPB with an oncoretroviral vector that coexpresses MGMTP140K and the enhanced green fluorescent protein (EGFP) (n = 5 donors). At 4 weeks posttransplantation into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice, cohorts were not treated or were treated with low- or high-intensity alkylating chemotherapy. In the high-intensity-treated cohort, it was necessary to infuse NOD/SCID bone marrow (BM) to alleviate hematopoietic toxicity. At 8 weeks posttreatment, human CD45+ cells in the BM of mice treated with either regimen were EGFP+ and contained MGMT-specific DNA repair activity. In cohorts receiving low-intensity therapy, both primitive and mature hematopoietic cells were present in the BM. Although B-lymphoid and myeloid cells were resistant to in vivo drug treatment in cohorts that received high-intensity therapy, no human CD34+ cells or B-cell precursors were detected. These data suggest that improved strategies to optimize repair of DNA damage in primitive human hematopoietic cells are needed when using high-intensity anti-cancer therapy.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Cai, S., Hartwell, J. R., Cooper, R. J., Juliar, B. E., Kreklau, E., Abonour, R., ... & Pollok, K. E. (2006). In vivo effects of myeloablative alkylator therapy on survival and differentiation of MGMTP140K-transduced human G-CSF-mobilized peripheral blood cells. Molecular Therapy, 13(5), 1016-1026.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Molecular Therapy
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}