Role of Stenotrophomonas Maltophilia Pili Iin Biofilm And Virulence

dc.contributor.advisorMarrs, Kathleen
dc.contributor.advisorAnderson, Gregory
dc.contributor.authorBhaumik, Radhika
dc.contributor.otherBerbari, Nicolas
dc.contributor.otherMarrs, James A.
dc.contributor.otherGregory, Richard L.
dc.date.accessioned2024-09-03T12:43:17Z
dc.date.available2024-09-03T12:43:17Z
dc.date.issued2024-08
dc.degree.date2024
dc.degree.disciplineDepartment of Biologyen
dc.degree.grantorPurdue Universityen
dc.degree.levelPh.D.
dc.descriptionIndiana University-Purdue University Indianapolis (IUPUI)en
dc.description.abstractStenotrophomonas maltophilia is an emerging multidrug-resistant, Gram-negative opportunistic pathogen. It causes many hospital-acquired infections such as sepsis, endocarditis, meningitis, and catheter-related urinary tract infections. It also affects individuals with cystic fibrosis, exacerbating their lung condition. S. maltophilia often causes pathogenesis through the formation of biofilms. However, the molecular mechanisms S. maltophilia uses to carry out these pathogenic steps are unclear. The SMF-1 chaperone/usher pilus has been thought to mediate S. maltophilia attachment. To confirm this role, we created an isogenic deletion of the smf-1 pilin gene and observed a defect in biofilm compared to wild type. We also discovered 2 additional chaperone/usher pilus operons, mutation of which also caused attenuation in biofilm levels. Analysis of S. maltophilia clinical strains and S. maltophilia complete genomes listed in NCBI showed that these three pili are prevalent and highly conserved, suggesting a vital role in infection. Intriguingly, through TEM studies, we found that the mutation of one pilus is not phenotypically compensated by another. Infection of Galleria mellonella larvae revealed increased virulence of the pilus mutants. Additionally, we also demonstrated a relationship between pilus and flagella contributing to the overall biofilm development of S. maltophilia. Understanding their activity may help identify therapeutic targets for this pathogen.
dc.identifier.urihttps://hdl.handle.net/1805/43080
dc.language.isoen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectStenotrophomonas maltophilia
dc.subjectBiofilm
dc.subjectCystic fibrosis
dc.subjectGalleria mellonella
dc.subjectPili
dc.titleRole of Stenotrophomonas Maltophilia Pili Iin Biofilm And Virulence
dc.typeThesisen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Radhika Bhaumik Purdue Thesis_5.pdf
Size:
2.57 MB
Format:
Adobe Portable Document Format
Description:
Stenotrophomonas maltophilia is an emerging multidrug-resistant, Gram-negative opportunistic pathogen. It causes many hospital-acquired infections such as sepsis, endocarditis, meningitis, and catheter-related urinary tract infections. It also affects individuals with cystic fibrosis, exacerbating their lung condition. S. maltophilia often causes pathogenesis through the formation of biofilms. However the molecular mechanisms S. maltophilia uses to carry out these pathogenic steps are unclear. The SMF-1 chaperone/usher pilus has been thought to mediate S. maltophilia attachment. To confirm this role, we created an isogenic deletion of the smf-1 pilin gene and observed a defect in biofilm compared to wild type. We also discovered 2 additional chaperone/usher pilus operons, mutation of which also caused attenuation in biofilm levels. Analysis of S. maltophilia clinical strains and S. maltophilia complete genomes listed in NCBI showed that these three pili are prevalent and highly conserved, suggesting a vital role in infection. Intriguingly, through TEM studies, we found that the mutation of one pilus is not phenotypically compensated by another. Infection of Galleria mellonella larvae revealed increased virulence of the pilus mutants. Additionally, we also demonstrated a relationship between pilus and flagella contributing to the overall biofilm development of S. maltophilia. Understanding their activity may help identify therapeutic targets for this pathogen
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: