Structural Basis of Arrestin Binding to Cell Membranes

dc.contributor.advisorChen, Qiuyan
dc.contributor.authorMiller, Kyle Warren
dc.contributor.otherTakagi, Yuichiro
dc.contributor.otherGeorgiadis, Millie M.
dc.contributor.otherHurley, Thomas D.
dc.date.accessioned2024-06-11T17:08:47Z
dc.date.available2024-06-11T17:08:47Z
dc.date.issued2024-04
dc.degree.date2024
dc.degree.disciplineDepartment of Biochemistry & Molecular Biologyen
dc.degree.grantorIndiana Universityen
dc.degree.levelM.S.
dc.descriptionIndiana University-Purdue University Indianapolis (IUPUI)en
dc.description.abstractTwo non-visual arrestins, arrestin2 (Arr2) and arrestin3 (Arr3), selectively interact with activated and phosphorylated G protein-coupled receptors (GPCRs) and play crucial roles in regulating many important physiological processes. Arrestins also engage the lipid bilayer surrounding activated GPCRs, which further potentiates arrestin activation and regulates GPCR trafficking in cells. Because of this, structural and functional understanding of arrestins would provide insight in enhancing arrestin’s GPCR desensitization for various diseases where constitutively active GPCR mutants play a role including congenital endocrine disorders and familial gestational hyperthyroidism. To better understand the membrane binding role of arrestins, we performed in vitro binding assays and demonstrated that Arr2 selectively binds to nanodiscs containing Phosphatidylinositol 4,5-bisphosphate (PIP2) even in the absence of different binding sites. Our cryo-electron microscopy (Cryo-EM) structure of Arr2 in complex with PIP2 nanodisc reveals that multiple structural elements of Arr2, including the finger loop, C domain and C-edge loop, contribute to membrane binding. Eliminating one individual site does not significantly impact Arr2 binding to the nanodisc. Moreover, a preactivated variant of Arr2 shows increased binding to the nanodisc than wildtype. We also labeled four potential membrane binding sites with monobromobimane (mBrB) and detected different levels of fluorescence increase in the presence of nanodisc containing various types of phospholipids. Overall, our study provides detailed structural evidence on how arrestins engage the membrane via multiple contact points and how this can impact arrestin-mediated signaling.
dc.identifier.urihttps://hdl.handle.net/1805/41427
dc.language.isoen_US
dc.rightsCC0 1.0 Universalen
dc.rights.urihttps://creativecommons.org/publicdomain/zero/1.0
dc.subjectArrestin
dc.subjectBinding
dc.subjectMembrane
dc.subjectStructure
dc.subjectNanodisc
dc.subjectCryo-EM
dc.subjectNi-NTA column
dc.subjectPIP2
dc.subjectPOPC
dc.subjectPOPS
dc.subjectPOPG
dc.titleStructural Basis of Arrestin Binding to Cell Membranes
dc.typeThesisen
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
STRUCTURAL BASIS OF ARRESTIN BINDING TO CELL MEMBRANE_KM_Scholarworks.pdf
Size:
3.08 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: