Identification and characterization of small-molecule inhibitors of aldehyde dehydrogenase 1A1

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2015-01
Language
American English
Embargo Lift Date
Department
Degree
Ph.D.
Degree Year
2015
Department
Department of Biochemistry & Molecular Biology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

The human genome encodes 19 members of the aldehyde dehydrogenase (ALDH) superfamily, critical enzymes involved in the metabolism of aldehyde substrates. A major function of the ALDH1A subfamily is the oxidation of retinaldehyde to retinoic acid, a key regulator of numerous cell growth and differentiation pathways. ALDH1A1 has been identified as a biomarker for both normal stem cells and cancer stem cells. Small molecule probes are needed to better understand the role of this enzyme in both normal and disease states. However, there are no commercially available, small molecules that selectively inhibit ALDH1A1. Our goal is to identify and characterize small molecule inhibitors of ALDH1A1 as chemical tools and as potential therapeutics. To better understand the basis for selective inhibition of ALDH1A1, we characterized N,N-diethylaminobenzaldehyde (DEAB), which is a commonly used inhibitor of ALDH1A1 and purported to be selective. DEAB serves as the negative control for the Aldefluor assay widely utilized to identify stem cells. Rather than being a selective inhibitor for ALDH1A1, we found that DEAB is a slow substrate for multiple ALDH isoenzymes, and depending on the rate of turnover, DEAB behaves as either a traditional substrate or as an inhibitor. Due to its very slow turnover, DEAB is a potent inhibitor of ALDH1A1 with respect to propionaldehyde oxidation, but it is not a good candidate for the development of selective ALDH1A1 inhibitors because of its promiscuity. Next, to discover novel selective inhibitors, we used an in vitro, high-throughput screen of 64,000 compounds to identify 256 hits that either activate or inhibit ALDH1A1 activity. We have characterized two structural classes of compounds, CM026 and CM037, using enzyme kinetics and X-ray crystallographic structural data. Both classes contained potent and selective inhibitors for ALDH1A1. Structural studies of ALDH1A1 with CM026 showed that CM026 binds at the active site, and its selectivity is achieved by a single residue substitution. Importantly, CM037 selectively inhibits proliferation of ALDH+ ovarian cancer cells. The discovery of these two selective classes of ALDH1A1 inhibitors may be useful in delineating the role of ALDH1A1 in biological processes and may seed the development of new chemotherapeutic agents.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}