Brain Connectome Network Properties Visualization

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2018-12
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.
Degree Year
2018
Department
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Brain connectome network visualization could help the neurologists inspect the brain structure easily and quickly. In the thesis, the model of the brain connectome network is visualized in both three dimensions (3D) environment and two dimensions (2D) environment. One is named “Brain Explorer for Connectomic Analysis” (BECA) developed by the previous research already. It could present the 3D model of brain structure with region of interests (ROIs) in different colors [5]. The other is mainly for the information visualization of brain connectome in 2D. It adopts the force-directed layout to visualize the network. However, the brain network visualization could not bring the user intuitively ideas about brain structure. Sometimes, with the increasing scales of ROIs (nodes), the visualization would bring more visual clutter for readers [3]. So, brain connectome network properties visualization becomes a useful complement to brain network visualization. For a better understanding of the effect of Alzheimer’s disease on the brain nerves, the thesis introduces several methods about the brain graph properties visualization. There are the five selected graph properties discussed in the thesis. The degree and closeness are node properties. The shortest path, maximum flow, and clique are edge properties. Except for clique, the other properties are visualized in both 3D and 2D. The clique is visualized only in 2D. For the clique, a new hypergraph visualization method is proposed with three different algorithms. Instead of using an extra node to present a clique, the thesis uses a “belt” to connect all nodes within the same clique. The methods of node connections are based on the traveling salesman problem (TSP) and Law of cosines. In addition, the thesis also applies the result of the clique to adjust the force-directed layout of brain graph in 2D to dramatically eliminate the visual clutter. Therefore, with the support of the graph properties visualization, the brain connectome network visualization tools become more flexible.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}