Combining Proration and Full Information Maximum Likelihood in Handling Missing Data in Likert Scale Items: A Hybrid Approach

dc.contributor.authorWu, Wei
dc.contributor.authorGu, Fei
dc.contributor.authorFukui, Sadaaki
dc.date.accessioned2020-10-12T16:57:09Z
dc.date.available2020-10-12T16:57:09Z
dc.date.issued2020-10-10
dc.description.abstractThis is example SAS code for a manuscript entitled “Combining Proration and Full Information Maximum Likelihood in Handling Missing Data in Likert Scale Items: A Hybrid Approach" coauthored by Wei Wu, Fei Gu, and Sadaaki Fukui.en_US
dc.identifier.citationWu W., Gu F., Fukui, S. (2020). Combining Proration and Full Information Maximum Likelihood in Handling Missing Data in Likert Scale Items: A Hybrid Approach. Behavioral Research Methods. Under review.en_US
dc.identifier.urihttps://hdl.handle.net/1805/24059
dc.language.isoen_USen_US
dc.subjectSASen_US
dc.subjectPerson mean imputationen_US
dc.subjectmisisng dataen_US
dc.subjectprorationen_US
dc.titleCombining Proration and Full Information Maximum Likelihood in Handling Missing Data in Likert Scale Items: A Hybrid Approachen_US
dc.title.alternativeExample SAS codeen_US
dc.typeSoftwareen_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
supplementary materials.docx
Size:
19.28 KB
Format:
Microsoft Word XML
Description:
example sas code
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: