Exercise Training Improves Cardiac and Skeletal Muscle Metabolism in Rats with Pulmonary Arterial Hypertension

Date
2013-04-05
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

In patients with pulmonary arterial hypertension (PAH), a shift from oxidative to glycolytic metabolism promotes right ventricular (RV) and skeletal muscle dysfunction that contributes to reduced exercise tolerance. As seen for other cardiopulmonary diseases, exercise training (ExT) may ameliorate this glycolytic switch in PAH and improve exercise capacity. The purpose of this research is to investigate ExT in a rat model of PAH on markers of glycolytic and oxidative metabolism in RV and skeletal muscle. Male Sprague-Dawley rats received monocrotaline (MCT, 40 mg/kg, s.q.) to induce PAH (n= 13), or saline, for healthy controls (n=5). After 2 wks, with MCT-induced PAH established, 6 wks of treadmill (TM) ExT was initiated for a subset of PAH animals (PAH-ExT, n= 6) and healthy controls (CON-ExT, n=3). ExT runs progressed up to 60 min at mild relative intensity, 50% of maximal aerobic capacity (VO2max). VO2max was assessed at baseline, in pre-training and post-training TM testing via analysis of expired gases. Abundance of Glut-1, a marker of glycolytic metabolism, was evaluated in cryosections of RV and soleus with immunofluorescent (IF) staining and quantification. Data are presented as mean±SE. MCT-ExT rats maintained aerobic capacity over 6 wks better than sedentary counterparts (MCT-SED)(VO2max= -134±109 vs. -521±129 ml/kg/hr, p=0.04) and was not different than CON-ExT (-201±31 ml/kg/hr, p=0.82). A lower abundance of Glut-1 was observed in both RV and soleus myocytes of PAH-ExT rats (MPI= 10.9 ±0.9 for RV; 13.7±0.8 for soleus) compared to PAH-SED rats (15.7±2.4, p=0.05, for RV; 17.4±1.4, p=0.04, for soleus) and was similar to CON-ExT rats (13.0±2.2, p=0.33, for RV; 9.0±2.3, p=0.26, for soleus), indicative of a shift toward greater dependency on oxidative metabolism. Exercise training attenuates functional decline following MCT administration in rats. Preservation of aerobic capacity may be explained by promotion of more efficient RV and skeletal muscle mitochondrial substrate utilization.

Description
poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Gaidoo, Richard G., Jacob Crist, Nathaniel Little, Tsungai J. Chingombe, Amanda Fisher, Robert Presson, Tim Lahm, Irina Petrache, and Mary Beth Brown. (2013, April 5). Exercise Training Improves Cardiac and Skeletal Muscle Metabolism in Rats with Pulmonary Arterial Hypertension. Poster session presented at IUPUI Research Day 2013, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}