Base- and Visible Light-Promoted Activation of Aryl Halides under Transition-Metal-Free Conditions: Applications and Mechanistic Studies

Date
2021-12
Authors
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2021
Department
Chemistry & Chemical Biology
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Aromatic rings are universal motifs in natural products, pharmaceuticals, agrochemicals, and wide variety of organic materials. Aromatic halides are widely used as synthetic precursors in all these applications. Therefore, tremendous effort has been devoted to activate aryl halides in the past decades. The common methods to activate aryl halides require the use of transition- metals either in the form of Grignard reagents or through the use of transition-metal catalysis. Over the past decade, photoredox catalysis has attracted significant attention as a cogent tool to develop greener synthetic processes and enable new molecular activation pathways under mild conditions. The most common of these approaches uses a photoredox/nickel dual catalytic cycle. While this technology has greatly expanded the toolbox of organic chemists, this method still requires expensive rare-metal-based catalyts. Herein, we present a series of visible light-induced methods that are transition-metal-free. These new base-promoted transformations and their mechanistic work will be discussed in the following order: We will first present our discovery that the dimsyl anion enables visible-light-promoted charge transfer in cross-coupling reactions of aryl halides. This work was applied to the synthesis of unsymmetrical diaryl chalcogenides. This method has a broad scope and functional group tolerance. An electron-donor-acceptor (EDA) complex between a dimsyl anion and the aryl halide is formed during the reaction and explains the observed aryl radical reactivity observed. Then, a visible-light-induced borylation and phosphorylation of aryl halides under mild conditions was developed. Inspired by the mechanistic breakthroughs observed in the previous work. The mechanism of this reaction also involves an aryl radical that is presumed to be formed also via an EDA complex. In other work, a photo-induced phosphonation of ArI using N,N- diisopropylethylamine (DIPEA) and trialkyl phosphites was developed. This method uses very mild conditions, which allowed the preparation a wide variety of functionalized aromatic phosphonates derivatives, including natural products and medicinal compounds. Finally, a photochemical amination of amides was developed via a C(sp 3 )–H bond functionalization process under visible light irradiation. This reaction showed good functional group compatibility without the use of external radical initiators, strong oxidants, or heat source. An EDA complex between N-bromophthalimide and LiOtBu is formed during the reaction.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}