On Random Polynomials Spanned by OPUC

dc.contributor.advisorYattselev, Maxim
dc.contributor.authorAljubran, Hanan
dc.contributor.otherBleher, Pavel
dc.contributor.otherMukhin, Evgeny
dc.contributor.otherRoeder, Roland
dc.date.accessioned2021-01-05T18:46:54Z
dc.date.available2021-01-05T18:46:54Z
dc.date.issued2020-12
dc.degree.date2020en_US
dc.degree.disciplineMathematical Sciencesen
dc.degree.grantorPurdue Universityen_US
dc.degree.levelPh.D.en_US
dc.descriptionIndiana University-Purdue University Indianapolis (IUPUI)en_US
dc.description.abstractWe consider the behavior of zeros of random polynomials of the from \begin{equation*} P_{n,m}(z) := \eta_0\varphi_m^{(m)}(z) + \eta_1 \varphi_{m+1}^{(m)}(z) + \cdots + \eta_n \varphi_{n+m}^{(m)}(z) \end{equation*} as \( n\to\infty \), where \( m \) is a non-negative integer (most of the work deal with the case \( m =0 \) ), \( \{\eta_n\}_{n=0}^\infty \) is a sequence of i.i.d. Gaussian random variables, and \( \{\varphi_n(z)\}_{n=0}^\infty \) is a sequence of orthonormal polynomials on the unit circle \( \mathbb T \) for some Borel measure \( \mu \) on \( \mathbb T \) with infinitely many points in its support. Most of the work is done by manipulating the density function for the expected number of zeros of a random polynomial, which we call the intensity function.en_US
dc.identifier.urihttps://hdl.handle.net/1805/24765
dc.identifier.urihttp://dx.doi.org/10.7912/C2/2418
dc.language.isoen_USen_US
dc.subjectrandom polynomialsen_US
dc.subjectorthogonal polynomials on the unit circleen_US
dc.subjectexpected number of real zerosen_US
dc.subjectasymptotic expansionen_US
dc.titleOn Random Polynomials Spanned by OPUCen_US
dc.typeThesisen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis.pdf
Size:
800.05 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: