Exploring Potential Pharmacologic Treatments for Alcoholism: Can the Use of Drugs Selective for the µ-, δ-, and κ- Opioid Receptors Differentially Modulate Alcohol Drinking?

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2013-07-12
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2012
Department
Department of Psychology
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Naltrexone (NTX) is clinically efficacious at attenuating alcohol intake in non-abstinent alcoholics and, to a lesser extent, craving, independent of intake. While generally regarded as a non-selective opioid antagonist, NTX has been shown to have concentration dependent selectivity with lower doses (< 1.0 mg/kg) selective for the mu receptor and doses exceeding 1.0 mg/kg capable of binding to delta and kappa receptors. Like the mu system, the delta receptor system has also been implicated in mediating the rewarding effects of EtOH. In contrast, the role of the kappa system is less clear though recent evidence suggests that kappa activation may mediate EtOH aversion. Thus, the present study sought to evaluate the effects of both mu-selective and non-selective doses of naltrexone, the selective delta antagonist naltrindole (NTI), and the selective kappa agonist U50,488H (U50) in a paradigm that procedurally separates the motivation to seek versus consume a reinforcer to assess whether these receptor-selective drugs differentially affects these behaviors in both selected (alcohol-preferring P rats) and non-selected (Long Evans) rats, and whether these effects are specific to EtOH. Rats were trained to complete a single response requirement that resulted in access to either 2% sucrose or 10% EtOH for a 20-min drinking session. In three separate experiments, rats were injected (using a balanced design) with either vehicle or 1 of 3 doses of drug: U50 (IP; 2.5, 5.0, or 10.0mg/kg), NTI (IP; 2.5, 5.0, or 10.0 mg/kg), low NTX (SC; 0.1, 0.3, or 1.0 mg/kg) or high NTX (SC; 1.0, 3.0, or 10.0 mg/kg) on both consummatory and appetitive treatment days. Following either a 20 (U50), 15 (NTI), or 30 minute (NTX)
pretreatment, rats were placed into an operant chamber and intake (consummatory) or lever responses (appetitive) and response latencies were recorded. The results showed that overall: U50, NTI, and NTX attenuated intake and responding for sucrose and EtOH. Independent of reinforcer, LE rats were more sensitive to U50’s effects on intake while P rats were more sensitive to the effects on seeking. P rats reinforced with EtOH were more sensitive to NTI’s effects on intake and seeking than all other rat groups. P rats were more sensitive overall to lower doses of NTX than LE rats and lower doses of NTX were more selective in attenuating EtOH responding vs. sucrose. Higher doses of NTX suppressed intake and responding across both lines and reinforcers. These results demonstrate that craving and intake may be differentially regulated by the kappa, delta, and mu opioid receptor systems as a function of “family history” and suggest that different mechanisms of the same (opioid) system may differentially affect craving and intake.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}