An Extreme Learning Machine-based Pedestrian Detection Method

dc.contributor.authorYang, Kai
dc.contributor.authorDu, Eliza Y.
dc.contributor.authorDelp, Edward J.
dc.contributor.authorJiang, Pingge
dc.contributor.authorJiang, Feng
dc.contributor.authorChen, Yaobin
dc.contributor.authorSherony, Rini
dc.contributor.authorTakahashi, Hiroyuki
dc.date.accessioned2015-09-22T18:58:52Z
dc.date.available2015-09-22T18:58:52Z
dc.date.issued2013-04-05
dc.descriptionposter abstracten_US
dc.description.abstractPedestrian detection is a challenging task due to the high variance of pedestrians and fast changing background, especially for a single in-car camera system. Traditional HOG+SVM methods have two challenges: (1) false positives and (2) processing speed. In this paper, a new pedestrian detection method using multimodal HOG for pedestrian feature extraction and kernel based Extreme Learning Machine (ELM) for classification is presented. The experimental results using our naturalistic driving dataset show that the proposed method outperforms the traditional HOG+SVM method in both recognition accuracy and processing speed.en_US
dc.identifier.citationYang, Kai, Eliza Y. Du, Edward J. Delp, Pingge Jiang, Feng Jiang, Yaobin Chen, Rini Sherony, and Hiroyuki Takahashi. (2013, April 5). An Extreme Learning Machine-based Pedestrian Detection Method. Poster session presented at IUPUI Research Day 2013, Indianapolis, Indiana.en_US
dc.identifier.urihttps://hdl.handle.net/1805/7019
dc.language.isoen_USen_US
dc.publisherOffice of the Vice Chancellor for Researchen_US
dc.subjectPedestrian detectionen_US
dc.subjectin-car camera systemen_US
dc.subjectmultimodal HOGen_US
dc.subjectpedestrian feature extractionen_US
dc.subjectExtreme Learning Machineen_US
dc.subjectHOG+SVM methoden_US
dc.titleAn Extreme Learning Machine-based Pedestrian Detection Methoden_US
dc.typePosteren_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yang-extreme.pdf
Size:
55.07 KB
Format:
Adobe Portable Document Format