Large Scale Semantic Annotation of Radiology Reports

dc.contributor.authorMahoui, Malika
dc.contributor.authorKashyap, Vinay
dc.contributor.authorJamieson, Patrick
dc.contributor.authorJones, Josette
dc.contributor.authorFriedlin, Jeffrey
dc.date.accessioned2016-11-04T18:25:54Z
dc.date.available2016-11-04T18:25:54Z
dc.date.issued2010-04-09
dc.descriptionposter abstracten_US
dc.description.abstractThe development and testing of automated information extraction (IE) systems depends on semantically annotated free text. This presentation reports on the results of a large scale annotation project of a radiology corpus, the Roentgen corpus, consisting of 594,000 deidentified radiology reports with 36 million words, and 4.3 million sentences supplied by Indiana University. The presentation highlights the (1) sentence-based approach in defining propositions annotating the corpus, (2) as well as the annotation framework that is incrementally built and refined in order to facilitate the process of annotation.en_US
dc.identifier.citationMalika Mahoui, School of Informatics, Vinay Kashyap, Informatics Student, Patrick Jamieson M.D., Logical Semantics, Inc., Josette Jones R.N., Ph.D., School of Informatics, and Jeffrey Friedlin, D.O, Regenstrief Institute. (2010, April 9). Large Scale Semantic Annotation of Radiology Reports. Poster session presented at IUPUI Research Day 2010, Indianapolis, Indiana.en_US
dc.identifier.urihttps://hdl.handle.net/1805/11392
dc.language.isoen_USen_US
dc.publisherOffice of the Vice Chancellor for Researchen_US
dc.subjectautomated information extraction (IE) systemsen_US
dc.subjectSemantic Annotationen_US
dc.subjectRadiology Reportsen_US
dc.subjectRoentgen corpusen_US
dc.titleLarge Scale Semantic Annotation of Radiology Reportsen_US
dc.typePosteren_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mahoui-Large.pdf
Size:
18.77 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: