The effect of triple antibiotic paste and EDTA on the surface loss and surface roughness of radicular dentin
Date
Authors
Language
Embargo Lift Date
Department
Committee Chair
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Introduction: Regenerative endodontic therapy in immature teeth with necrotic pulps triggers continued root development thereby improving the prognosis of these teeth. Several agents are under consideration for the disinfection and conditioning phases of this therapy. Triple antibiotic paste (TAP, i.e. equal parts of ciprofloxacin, metronidazole, minocycline) is used for canal disinfection and 17% EDTA solution is used for dentin conditioning. However, TAP and EDTA cause demineralization and their effect on surface loss and surface roughness of radicular dentin during regenerative procedures has not been quantified. Surface loss may be correlated with reduced tooth strength and surface roughness may be correlated with stem cell attachment. Objectives: The aim of this in vitro study was to quantitatively investigate the surface loss and surface roughness on human radicular dentin after treatment with two concentrations of TAP followed by EDTA. Materials and Methods: Human radicular dentin specimens were prepared from extracted human anterior teeth and randomized into six experimental groups. Group 1: saline control; Group 2: 17% EDTA; Group 3: TAP 1 mg/mL; Group 4: TAP 1 mg/mL and 17% EDTA; Group 5: TAP 1,000 mg/mL; Group 6: TAP 1,000 mg/mL and 17% EDTA for 5 minutes. After TAP is applied to Groups 3-6, all groups were incubated for 4 weeks. Then, groups 2, 4, and 6 were treated with EDTA for 5 minutes. Dentin surface loss (μm) and surface roughness (Ra, μm) were quantified after various treatments using non-contact and contact profilometry, respectively. Data were analyzed by one-way analysis of variance (α = 0.05) Hypothesis: It was hypothesized that there would be a significant difference in surface loss or surface roughness between at least two treatment groups. Results: All treatment groups showed significantly higher surface loss compared to untreated control. Dentin treated with 1g/mL TAP caused significant increase in surface loss and surface roughness compared to dentin treated with 1 mg/mL TAP. However, only 1g/mL TAP treated dentin showed significantly higher surface roughness compared to untreated control. The use of EDTA after both concentrations of TAP did not have significant additive effect on surface loss and surface roughness of dentin. Conclusion: The use of 1 mg/mL TAP can minimize surface loss and surface roughness of radicular dentin compared to higher concentrations. The use of EDTA after TAP may not cause additional surface loss and surface roughness of dentin.