Susceptibility of restorations and adjacent enamel/dentin to erosion under different salivary flow conditions
Date
Authors
Language
Embargo Lift Date
Department
Committee Chair
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
BACKGROUND: Dental erosion is a multifactorial condition that causes irreversible loss of dental hard tissues. Its development is highly influenced by saliva, with higher prevalence in hyposalivatory patients. There is no scientific consensus regarding the restorative treatment of choice for eroded teeth in such highly erosive conditions and to date, this has not been studied under in-vitro conditions. OBJECTIVES: To investigate the effect of erosion on direct tooth-colored restorations and adjacent enamel/dentin under different simulated salivary flow rates. METHODS: Bovine enamel and dentin specimens were prepared (n =16) and restored with the testing restorative materials, resin-composite (Filtek Z250), resin-modified glass ionomer (Fuji II LC), high viscosity glass ionomer cement (Fuji IX), and low viscosity glass ionomer cement (Fuji II).Then, submitted to an in-vitro erosion cycling model simulating different salivary flow rates (normal 0.5 ml/min and low 0.05 ml/min) and dental erosion protocols for 5 days. Surface loss of the restorative material and surrounding enamel/dentin surfaces were analyzed. A mixed-model ANOVAs and Sidak adjustment were used for statistical comparisons (p < 0.05). RESULTS: The surface loss was lower at 0.5 than at 0.05 ml/min, for all tested restorative materials except resin composite. Surface loss was higher in enamel and dentin adjacent to Filtek Z250 compared to Fuji II LC and Fuji IX, with no significant difference in enamel and dentin surface loss adjacent to Filtek Z250 and Fuji II. The restorations surface degradation was significantly lower for Filtek Z250 than for Fuji II, Fuji II LC, and Fuji IX, at both 0.5 and 0.05 ml/min; moreover, the surface loss was significantly lower for Fuji II LC than for Fuji II and Fuji IX, which did not differ from each other. CONCLUSION: Within the limitations of this study, it can be concluded that low salivary flow promoted higher erosive conditions. The use of Fuji II LC and Fuji IX may reduce erosive effects on enamel and dentin adjacent to restoration. Of the materials evaluated, resin-modified glass ionomer restoration may be the most suitable for restoration for patients at higher risk of erosion with low exposure to fluoride.