Improving Remote Sensing Algorithms Towards Inland Water Cyanobacterial Assessment From Space

Date
2021-09
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2021
Department
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Water is an essential resource for life on Earth, and monitoring its quality is an important task for mankind. However, the amount of water quality data collected by the traditional method is insufficient for the conservation and sustainable management of this important resource. This challenge will be exacerbated by increasing harmful algal blooms at the global scale. To fill this gap, Earth Observations (EO) have been proposed to help stakeholders make their decisions, but the use of EO for monitoring inland water quality is still in development. In this context, the main objective of this study was to improve the estimation of cyanobacteria via remote sensing data. To achieve this goal, the water type classification was first used to identify the dominant optically active constituents within aquatic environments. This information is crucial for understanding the optical properties of inland waters and selecting the best remote sensing algorithm for specific optical water types. The next research question was to develop a universal structure for retrieval of the inherent optical properties of several important aquatic systems around the world, which can be used as a corner stone for developing a globally applicable remote sensing algorithm. The third research topic of this dissertation is about removing the interference of chlorophyll-a with the absorption strength at 620 nm where phycocyanin exhibits its diagnostic absorption so that the estimation of phycocyanin concentration can be improved. Despite the novelty of the proposed remote sensing algorithms which are able to accommodate distinct water optical properties, there are abundant opportunities for improving the parameterization of the proposed models to retrieve inland water quality and optical properties when a global database of optical and water quality measurements is available. Considering the current advancement in spaceborne technology and the existence of a coordinate effort for global calibration and validation of remote sensing algorithms for monitoring inland waters, there is a high potential for operational assessment of harmful cyanobacterial blooms using the remote sensing algorithms proposed in this dissertation.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}