Mechanical Properties Of Provisional Restorative Materials

Date
2010
Language
American English
Embargo Lift Date
Department
Degree
M.S.D.
Degree Year
2010
Department
School of Dentistry
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

A provisional restoration must fulfill biologic, mechanical, and esthetic requirements. These prostheses should provide comfort, pulp protection, positional stability, occlusal function, hygiene access, esthetics, strength and retention. Methyl-methacrylate acrylic has assumed many appli¬cations in the field of restorative dentistry. However, the material still has deficiencies, such as polymerization shrinkage, pulpal damage associated with exothermic polymerization and susceptibility to fracture. Bis-GMA composites, Bis-acryl composites and visible light-cured urethane dimethacrylate resins have been developed to address these issues. The purpose of this study was to compare the mechanical properties of provisional restorations made from composite resins (Protemp Plus, Luxatemp Solar, Radica, Protemp Crown) to those made of the traditional methacrylate resins (Jet, Snap, High Impact). Six groups of samples, two groups from methacrylate and four groups from composite based materials, were fabricated. Samples from each group were evaluated for microhardness (n=10), flexural strength and flexural modulus (n=20) according to ISO 4049, and fracture toughness (n=20) according to ISO 13586. From each of the six groups, ten samples were tested for flexural strength, flexural modulus and fracture toughness and 5 samples were tested for microhardness. These tests were done after storing at 37°C in a distilled water solution for 7 days followed by thermal cycling (2500 cycles, 5-55°C, 45 s. dwell). Identical sets of samples from each group were used as controls; these were tested after storing for 24 hours in dry conditions. The results were analyzed by two-way ANOVA with material type and aging conditions as the two main variables. Significance level was set at p=0.05. For flexural strength and flexural modules, the higher values were obtained for Radica. Protemp plus (7 days) and Radica (24h) had the highest fracture toughness value. Protemp crown showed the highest surface hardness. The mechanical properties of composite resin were superior.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}