Dynamic Ciliary Localization in the Mouse Brain

dc.contributor.advisorBerbari, Nicolas F.
dc.contributor.authorBrewer, Katlyn
dc.contributor.otherMastracci, Teresa
dc.contributor.otherBalakrishnan, Lata
dc.date.accessioned2024-06-04T08:17:24Z
dc.date.available2024-06-04T08:17:24Z
dc.date.issued2024-05
dc.degree.date2024
dc.degree.disciplineDepartment of Biologyen
dc.degree.grantorPurdue Universityen
dc.degree.levelM.S.
dc.descriptionIUPUI
dc.description.abstractPrimary cilia are hair-like structures found on nearly all mammalian cell types, including cells in the developing and adult brain. Cilia establish a unique signaling compartment for cells. For example, a diverse set of receptors and signaling proteins localize within cilia to regulate many physiological and developmental pathways including the Hh pathway. Defects in cilia structure, protein localization, or cilia function lead to genetic disorders called ciliopathies, which present with various clinical features including several neurodevelopmental phenotypes and hyperphagia associated obesity. Despite their dysfunction being implicated in several disease states, understanding their roles in CNS development and signaling has proven challenging. I hypothesize that dynamic changes to ciliary protein composition contributes to this challenge and may reflect unrecognized diversity of CNS cilia. The proteins ARL13B and ADCY3 are established ciliary proteins in the brain and assessing their localization is often used in the field to visualize cilia. ARL13B is a regulatory GTPase important for regulating cilia structure, protein trafficking, and Hh signaling, while ADCY3 is a ciliary adenylyl cyclase thought to be involved in ciliary GPCR singaling. Here, I examine the ciliary localization of ARL13B and ADCY3 in the perinatal and adult mouse brain by defining changes in the proportion of cilia enriched for ARL13B and ADCY3 depending on brain region and age. Furthermore, I identify distinct lengths of cilia within specific brain regions of male and female mice. As mice age, ARL13B cilia become relatively rare in many brain regions, including the hypothalamic feeding centers, while ADCY3 becomes a prominent cilia marker. It is important to understand the endogenous localization patterns of these proteins throughout development and under different physiological conditions as these common cilia markers may be more dynamic than initially expected. Understanding regional and development associated cilia signatures and physiological condition cilia dynamic changes in the CNS may reveal molecular mechanisms associated with ciliopathy clinical features such as obesity.
dc.identifier.urihttps://hdl.handle.net/1805/41152
dc.language.isoen_US
dc.subjectPrimary cilia
dc.subjectBRAIN
dc.subjectHypothalamus
dc.subjectEnergy homeostasis
dc.subjectNucleus accumbens
dc.subjectARL13B
dc.subjectADCY3
dc.subjectPostnatal development
dc.subjectMouse brain
dc.titleDynamic Ciliary Localization in the Mouse Brain
dc.typeThesisen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
KK Brewer-MS Thesis.pdf
Size:
2.45 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: