A High-Resolution Study of Local Diagenetic Effects on the Geochemistry of the Late Ordovician Kope Formation
Date
Authors
Embargo Lift Date
Department
Committee Chair
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
The Ordovician (485-444 Ma) was a highly dynamic period, characterized by significant evolutionary and climatic change. Paleozoic fauna which evolved during the Great Ordovician Biodiversification Event (GOBE) populated extensive epicontinental seaways. Major sea level fluctuations during The Hirnantian glaciation are believed to have led to a mass extinction event at the End Ordovician. However, a reassessment of Early Paleozoic fossil assemblages suggests the onset of extinctions began in the mid-Katian, ~3 million years before the Hirnantian. The Kope formation, within the North American succession of the Katian, was deposited during the peak biodiversification of the GOBE at the point which a biological crisis begins. The well-studied series of interbedded shale and fossiliferous limestone beds, deposited within a shallow epeiric sea, provide ideal sedimentological and paleontological context to interpret sediment geochemistry recorded at the onset of a global mass extinction. For a high-resolution section of the Kope, δ34Spyrite show an extraordinary range of variability, up to 64.5‰, with systematic oscillations throughout the core. The isotope signal represents a mix of pyrite formed at the time of deposition and during diagenesis. As sea levels fluctuated, the amount of sediment delivery influenced the connection of sediment porewaters to overlying seawater sulfate and the location of the sulfate reduction zone, which in turn, masked the primary signal. Reactive iron data suggest low oxygen concentrations in the water column, however fossil assemblages found throughout the Kope suggest otherwise. Changes in sedimentation can mask the water column signal, so these data also capture an aggregate signal. δ15Nbulk show an upsection decrease of 4.4‰, followed by a 3.4‰ increase. Though this excursion can be interpreted as a switch to increased denitrification in a low oxygen environment, the fossil record suggests the data capture localized diagenetic reactions that occur below an oxic water column. Perturbations in the ocean-climate system is often based on the interpretation of stable isotope excursions, and although excursions are diagnostic of changes to biogeochemical cycles, they may not fully account for diagenetic reactions that mask primary signals. The results from the Kope demonstrate strong localized, not global, controls on the sediment geochemistry.