Hand2 function within non-cardiomyocytes regulates cardiac morphogenesis and performance

If you need an accessible version of this item, please submit a remediation request.
Date
2014
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2014
Department
Department of Medical & Molecular Genetics
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

The heart is a complex organ that is composed of numerous cell types, which must integrate their programs for proper specification, differentiation, and cardiac morphogenesis. During cardiac development the basic helix-loop-helix transcription factor Hand2 is dynamically expressed within the endocardium and extra-cardiac lineages such as the epicardium, cardiac neural crest cells (cNCCs), and NCC derived components of the autonomic nervous system. To investigate Hand2 function within these populations we utilized multiple murine Hand2 Conditional Knockout (H2CKO) genetic models. These studies establish for the first time a functional requirement for Hand2 within the endocardium, as several distinct phenotypes including hypotrabeculation, tricuspid atresia, aberrant septation, and precocious coronary development are observed in endocardial H2CKOs. Molecular analyses reveal that endocardial Hand2 functions within the Notch signaling pathway to regulate expression of Nrg1, which encodes a crucial secreted growth factor. Furthermore, we demonstrate that Notch signaling regulates coronary angiogenesis via Hand2 mediated modulation of Vegf signaling. Hand2 is strongly expressed within midgestation NCC and endocardium derived cardiac cushion mesenchyme. To ascertain the function of Hand2 within these cells we employed the Periostin Cre (Postn-Cre), which marks cushion mesenchyme, a small subset of the epicardium, and components of the autonomic nervous system, to conditionally ablate Hand2. We find that Postn-Cre H2CKOs die shortly after birth despite a lack of cardiac structural defects. Gene expression analyses demonstrate that Postn-Cre ablates Hand2 from the adrenal medulla, causing downregulation of Dopamine Beta Hydroxylase (Dbh), a gene encoding a crucial catecholaminergic biosynthetic enzyme. Electrocardiograms demonstrate that 3-day postnatal Postn-Cre H2CKO pups exhibit significantly slower heart rates than control littermates. In conjunction with the aforementioned gene expression analyses, these results indicate that loss of Hand2 function within the adrenal medulla results in a catecholamine deficiency and subsequent heart failure.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}