Development and stability of IL-17-secreting T cells

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2014
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2014
Department
Department of Microbiology and Immunology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

IL-17-producing T cells are critical to the development of pathogen and tumor immunity, but also contribute to the pathology of autoimmune diseases and allergic inflammation. CD8+ (Tc17) and CD4+ (Th17) IL-17-secreting T cells develop in response to a cytokine environment that activates Signal Transducer and Activator of Transcription (STAT) proteins, though the mechanisms underlying Tc17/Th17 development and stability are still unclear. In vivo, Tc17 cells clear vaccinia virus infection and acquire cytotoxic potential, that is independent of IL-17 production and the acquisition of IFN-γ-secreting potential, but partially dependent on Fas ligand, suggesting that Tc17-mediated vaccinia virus clearance is through cell killing independent of an acquired Tc1 phenotype. In contrast, memory Th cells and NKT cells display STAT4-dependent IL-23-induced IL-17 production that correlates with Il23r expression. IL-23 does not activate STAT4 nor do other STAT4-activating cytokines induce Il23r expression in these populations, suggesting a T cell-extrinsic role for STAT4 in mediating IL-23 responsiveness. Although IL-23 is important for the maintenance of IL-17-secreting T cells, it also promotes their instability, often resulting in a pathogenic Th1-like phenotype in vitro and in vivo. In vitro-derived Th17 cells are also flexible when cultured under polarizing conditions that promote Th2 or Th9 differentiation, adopting the respective effector programs, and decreasing IL-17 production. However, in models of allergic airway disease, Th17 cells do not secrete alternative cytokines nor adopt other effector programs, and remain stable IL-17-secretors. In contrast to Th1-biased pro-inflammatory environments that induce Th17 instability in vivo, during allergic inflammatory disease, Th17 cells are comparatively stable, and retain the potential to produce IL-17. Together these data document that the inflammatory environment has distinct effects on the stability of IL-17-secreting T cells in vivo.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}