Changes in vertebral strength-density and energy absorption-density relationships following bisphosphonate treatment in beagle dogs

Date
2008-01
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

We aimed to determine the effects of bisphosphonates on mechanical properties independent of changes in bone density. Our results show that at equivalent bone densities, vertebrae from beagles treated with bisphosphonate have equivalent bone strength and reduced bone energy absorption compared to those from untreated animals. INTRODUCTION: Assessing the relationship between mechanical properties and bone density allows a biomechanical evaluation of bone quality, with differences at a given density indicative of altered quality. The purpose of this study was to evaluate the strength-density and energy absorption-density relationships in vertebral bone following a one-year treatment with clinical doses of two different bisphosphonates in beagle dogs. METHODS: Areal bone mineral density (aBMD) and compressive mechanical properties (ultimate load and energy absorption) were assessed on lumbar vertebrae from skeletally mature beagle dogs treated with vehicle (VEH), alendronate (ALN), or risedronate (RIS). Relationships among properties were assessed using analyses of covariance. RESULTS: Neither treatment altered the strength-density relationship compared to VEH, suggesting increases in vertebral strength with bisphosphonate-treatment are explained by increased density. The energy absorption-density relationship was altered by ALN, resulting in significantly lower energy absorption capacity at a given aBMD compared to both VEH (-22%) and RIS (-14%). CONCLUSIONS: These data document that after adjusting for increased aBMD, vertebrae from animals treated with bisphosphonates have similar strength as those from untreated animals. Conversely, when adjusted for increased aBMD, alendronate treatment, but not risedronate treatment, significantly reduces the energy required for vertebral fracture, indicative of an alteration in bone quality.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Allen MR, Burr DB. Changes in vertebral strength-density and energy absorption-density relationships following bisphosphonate treatment in beagle dogs. Osteoporos Int. 2008 Jan;19(1):95-9. Epub 2007 Aug 21.
ISSN
Publisher
http://dx.doi.org/10.1007/s00198-007-0451-8
Series/Report
Sponsorship
The authors thank Dr. Tony Keaveny for insightful discussion regarding the topics addressed in this paper. This work was supported by NIH Grants AR047838 and AR007581 and a research grant from The Alliance for Better Bone Health (Procter & Gamble Pharmaceuticals and sanofi-aventis). Merck and Co. kindly provided the alendronate. This investigation utilized an animal facility constructed with support from Research Facilities Improvement Program Grant Number C06 RR10601-01 from the National Center for Research Resources, National Institutes of Health.
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}